sandbox/ghigo/src/test-stokes/couette.c

    Couette flow between rotating cylinders

    We solve here the (Stokes) Couette flow between two rotating cylinders. The outer cylinder is fixed and the inner cylinder is rotating with an angular velocity \omega = 1.

    #include "../myembed.h"
    #if CENTERED == 1
    #include "../mycentered2.h"
    #else
    #include "../mycentered.h"
    #endif // CENTERED
    #include "view.h"

    Exact solution

    We define here the exact solution for the tangential velocity u_{\theta} = r \omega, evaluated at the center of each cell.

    static double exact (double x, double y)
    {
      double r = sqrt (sq (x) +  sq (y));
      return (r*(sq (0.5/r) - 1.)/(sq (0.5/0.25) - 1.));
    }

    We also define the shape of the domain.

    void p_shape (scalar c, face vector f)
    {
      vertex scalar phi[];
      foreach_vertex()
        phi[] = difference (sq(0.5) - sq(x) - sq(y),
    			sq(0.25) - sq(x) - sq(y));
      fractions (phi, c, f);
      fractions_cleanup (c, f,
    		     smin = 1.e-14, cmin = 1.e-14);
    }
    
    #if TREE

    When using TREE, we try to increase the accuracy of the restriction operation in pathological cases by defining the gradient of u at the center of the cell.

    void u_embed_gradient_x (Point point, scalar s, coord * g)
    {
      double theta = atan2(y, x), r = sqrt(x*x + y*y);
    
      double utheta    = (r*(sq (0.5/r) - 1.)/(sq (0.5/0.25) - 1.));
      double duthetadr = ((sq (0.5/r) - 1.)  /(sq (0.5/0.25) - 1.) +
    		      r*(-0.5/cube (r))  /(sq (0.5/0.25) - 1.));
    
      double duxdr     = -duthetadr*sin (theta);
      double duxdtheta = -utheta*(cos (theta));
      
      g->x = duxdr*cos (theta) - duxdtheta*sin (theta);
      g->y = duxdr*sin (theta) + duxdtheta*cos (theta);
    }
    
    void u_embed_gradient_y (Point point, scalar s, coord * g)
    {
      double theta = atan2(y, x), r = sqrt(x*x + y*y);
    
      double utheta    = (r*(sq (0.5/r) - 1.)/(sq (0.5/0.25) - 1.));
      double duthetadr = ((sq (0.5/r) - 1.)  /(sq (0.5/0.25) - 1.) +
    		      r*(-0.5/cube (r))  /(sq (0.5/0.25) - 1.));
    
      double duydr     = duthetadr*cos (theta);
      double duydtheta = utheta*(-sin (theta));
      
      g->x = duydr*cos (theta) - duydtheta*sin (theta);
      g->y = duydr*sin (theta) + duydtheta*cos (theta);
    }
    #endif // TREE

    Setup

    We need a field for viscosity so that the embedded boundary metric can be taken into account.

    face vector muv[];

    We also define a reference velocity field.

    scalar un[];
    
    int lvl;
    
    int main()
    {

    The domain is 1\times 1.

      size (1 [0]);
      origin (-L0/2., -L0/2.);

    We set the maximum timestep.

      DT = 1.e-2;

    We set the tolerance of the Poisson solver.

      stokes       = true;
      TOLERANCE    = 1.e-5;
      TOLERANCE_MU = 1.e-5;
    
      for (lvl = 4; lvl <= 8; lvl++) { // minlevel = 3 (2pt/(d_{out} - d_{in}))

    We initialize the grid.

        N = 1 << (lvl);
        init_grid (N);
    
        run();
      }
    }

    Boundary conditions

    Properties

    event properties (i++)
    {
      foreach_face()
        muv.x[] = fm.x[];
    }

    Initial conditions

    event init (i = 0)
    {

    We set the viscosity field in the event properties.

      mu = muv;

    We use “third-order” face flux interpolation.

    #if ORDER2
      for (scalar s in {u, p})
        s.third = false;
    #else
      for (scalar s in {u, p})
        s.third = true;
    #endif // ORDER2
      
    #if TREE

    When using TREE and in the presence of embedded boundaries, we also define the gradient of u at the cell center of cut-cells.

    We initialize the embedded boundary.

    #if TREE

    When using TREE, we refine the mesh around the embedded boundary.

      astats ss;
      int ic = 0;
      do {
        ic++;
        p_shape (cs, fs);
        ss = adapt_wavelet ({cs}, (double[]) {1.e-30},
      		       maxlevel = (lvl), minlevel = (lvl) - 2);
      } while ((ss.nf || ss.nc) && ic < 100);
    #endif // TREE
      
      p_shape (cs, fs);

    We also define the volume fraction at the previous timestep csm1=cs.

      csm1 = cs;

    We define the boundary conditions for the velocity. The outer cylinder is fixed and the inner cylinder is rotating with an angular velocity \omega = 1.

      u.n[embed] = dirichlet (x*x + y*y > 0.14 ? 0. : - y);
      u.t[embed] = dirichlet (x*x + y*y > 0.14 ? 0. :   x);
      p[embed]   = neumann (0);
    
      uf.n[embed] = dirichlet (x*x + y*y > 0.14 ? 0. : - y);
      uf.t[embed] = dirichlet (x*x + y*y > 0.14 ? 0. :   x);

    We finally initialize the reference velocity field.

      foreach()
        un[] = u.y[];
    }

    Embedded boundaries

    Outputs

    event error (i++; i <= 1000)
    {

    We look for a stationary solution.

      double du = change (u.y, un);
      if (i > 0 && du < 1e-6)
        return 1; /* stop */
    }
    
    event logfile (t = end)
    {

    The total (e), partial cells (ep) and full cells (ef) errors fields and their norms are computed.

      scalar utheta[], e[], ep[], ef[];
      foreach() {
        double theta = atan2(y, x);
        utheta[] = - sin(theta)*u.x[] + cos(theta)*u.y[];
        if (cs[] == 0.)
          ep[] = ef[] = e[] = nodata;
        else {
          e[] = fabs (utheta[] - exact (x, y));
          ep[] = cs[] < 1. ? e[] : nodata;
          ef[] = cs[] >= 1. ? e[] : nodata;
        }
      }
      norm n = normf (e), np = normf (ep), nf = normf (ef);
      
      fprintf (stderr, "%d %.3g %.3g %.3g %.3g %.3g %.3g %d %g %g %d %d %d %d\n",
    	   N,
    	   n.avg, n.max,
    	   np.avg, np.max,
    	   nf.avg, nf.max,
    	   i, t, dt,
    	   mgp.i, mgp.nrelax, mgu.i, mgu.nrelax);
      fflush (stderr);
    
      if (lvl == 5) {
        draw_vof ("cs", "fs", filled = -1, fc = {1,1,1});
        cells ();
        save ("mesh.png");
    
        draw_vof ("cs", "fs", filled = -1, fc = {1,1,1});
        squares ("utheta", spread = -1);
        save ("utheta.png");
    
        draw_vof ("cs", "fs", filled = -1, fc = {1,1,1});
        squares ("p", spread = -1);
        save ("p.png");
    
        draw_vof ("cs", "fs", filled = -1, fc = {1,1,1});
        squares ("e", spread = -1);
        save ("e.png");
        
        foreach() {
          double theta = atan2(y, x), r = sqrt(x*x + y*y);
          fprintf (stdout, "%g %g %g %g %g %g %g\n",
    	       r, theta,
    	       u.x[], u.y[], p[],
    	       utheta[], e[]);
          fflush (stdout);
        }
      }
    }

    Results

    Mesh for l=5

    Mesh for l=5

    Angular velocity for l=5

    Angular velocity for l=5

    Pressure field for l=5

    Pressure field for l=5

    Error field for l=5

    Error field for l=5

    Velocity profile

    reset
    set terminal svg font ",16"
    set key top right spacing 1.1
    set grid
    set xlabel 'r'
    set ylabel 'u_theta'
    set xrange [0.2:0.55]
    set yrange [-0.05:0.35]
    
    powerlaw(r,N)=r*((0.5/r)**(2./N) - 1.)/((0.5/0.25)**(2./N) - 1.)
    
    set arrow from 0.25, graph 0 to 0.25, graph 1 nohead
    set arrow from 0.5, graph 0 to 0.5, graph 1 nohead
    plot powerlaw(x,1.) w l lc rgb "black" t 'analytic',		\
         'out' u 1:6 w p ps 0.75 lc rgb "blue" t 'Basilisk, l=5' 
    Velocity profile for l=5 (script)

    Velocity profile for l=5 (script)

    Errors

    reset
    set terminal svg font ",16"
    set key bottom left spacing 1.1
    set xtics 8,4,512
    set grid ytics
    set ytics format "%.0e" 1.e-12,100,1.e2
    set xlabel 'N'
    set ylabel '||error||_{1}'
    set xrange [8:512]
    set yrange [1.e-6:1.e-1]
    set logscale
    plot 'log' u 1:4 w p ps 1.25 pt 7 lc rgb "black" t 'cut-cells', \
         ''    u 1:6 w p ps 1.25 pt 5 lc rgb "blue" t 'full cells', \
         ''    u 1:2 w p ps 1.25 pt 2 lc rgb "red" t 'all cells'
    Average error convergence (script)

    Average error convergence (script)

    set ylabel '||error||_{inf}'
    plot '' u 1:5 w p ps 1.25 pt 7 lc rgb "black" t 'cut-cells', \
         '' u 1:7 w p ps 1.25 pt 5 lc rgb "blue" t 'full cells', \
         '' u 1:3 w p ps 1.25 pt 2 lc rgb "red" t 'all cells'
    Maximum error convergence (script)

    Maximum error convergence (script)

    Order of convergence

    We recover here the expected second-order convergence, using both a uniform and an adaptive mesh.

    reset
    set terminal svg font ",16"
    set key bottom left spacing 1.1
    set xtics 8,4,512
    set ytics -4,2,4
    set grid ytics
    set xlabel 'N'
    set ylabel 'Order of ||error||_{1}'
    set xrange [8:512]
    set yrange [-4:4.5]
    set logscale x
    
    # Asymptotic order of convergence
    
    ftitle(b) = sprintf(", asymptotic order n=%4.2f", -b);
    Nmin = log(128);
    gnuplot: No data to fit
    f1(x) = a1 + b1*x; # cut-cells
    f2(x) = a2 + b2*x; # full cells
    f3(x) = a3 + b3*x; # all cells
    
    fit [Nmin:*][*:*] f1(x) '< sort -k 1,1n log | awk "!/#/{print }"' u (log($1)):(log($4)) via a1,b1; # cut-cells 
    fit [Nmin:*][*:*] f2(x) '< sort -k 1,1n log | awk "!/#/{print }"' u (log($1)):(log($6)) via a2,b2; # full-cells
    fit [Nmin:*][*:*] f3(x) '< sort -k 1,1n log | awk "!/#/{print }"' u (log($1)):(log($2)) via a3,b3; # all cells
    
    plot '< sort -k 1,1n log | awk "!/#/{print }" | awk -f ../data/order.awk' u 1:4 w lp ps 1.25 pt 7 lc rgb "black" t 'cut-cells'.ftitle(b1), \
         '< sort -k 1,1n log | awk "!/#/{print }" | awk -f ../data/order.awk' u 1:6 w lp ps 1.25 pt 5 lc rgb "blue" t 'full cells'.ftitle(b2), \
         '< sort -k 1,1n log | awk "!/#/{print }" | awk -f ../data/order.awk' u 1:2 w lp ps 1.25 pt 2 lc rgb "red" t 'all cells'.ftitle(b3)
    Order of convergence of the average error (script)

    Order of convergence of the average error (script)

    set ylabel 'Order of ||error||_{inf}'
    
    # Asymptotic order of convergence
    
    fit [Nmin:*][*:*] f1(x) '< sort -k 1,1n log | awk "!/#/{print }"' u (log($1)):(log($5)) via a1,b1; # cut-cells 
    fit [Nmin:*][*:*] f2(x) '< sort -k 1,1n log | awk "!/#/{print }"' u (log($1)):(log($7)) via a2,b2; # full-cells
    fit [Nmin:*][*:*] f3(x) '< sort -k 1,1n log | awk "!/#/{print }"' u (log($1)):(log($3)) via a3,b3; # all cells
    
    plot '< sort -k 1,1n log | awk "!/#/{print }" | awk -f ../data/order.awk' u 1:5 w lp ps 1.25 pt 7 lc rgb "black" t 'cut-cells'.ftitle(b1), \
         '< sort -k 1,1n log | awk "!/#/{print }" | awk -f ../data/order.awk' u 1:7 w lp ps 1.25 pt 5 lc rgb "blue" t 'full cells'.ftitle(b2), \
         '< sort -k 1,1n log | awk "!/#/{print }" | awk -f ../data/order.awk' u 1:3 w lp ps 1.25 pt 2 lc rgb "red" t 'all cells'.ftitle(b3)
    Order of convergence of the maximum error (script)

    Order of convergence of the maximum error (script)

    See also