src/test/reflectiongaussian3.c

    Transmission/reflection of a wave propagating across an interface between two fluids

    In this test proposed by Denner et al. 2018 a linear wave propagating in an ideal gas is partially transmitted to another ideal gas with a different acoustic impedance.

    Parameters of the problem.

    double tend = 0.1;
    double uper = 0.0001;
    double freq = 4000.;
    double uref = 347.8;
    double p0, rho20, rho10;
    
    int main()
    {  
      
      CFLac = 0.25;

    The EOS for an adiabatic perfect gas is defined by its polytropic coefficient \Gamma = \gamma = 1.4.

      gamma1 = 1.4;
      gamma2 = 1.667;
      rho20  = 0.164/1.157;
      rho10 = 1;;
    
      p0 = 1./gamma1;
      freq *= sqrt(gamma2/gamma1/rho20)/uref;

    We perform a convergence study.

      for (N = 256; N <= 1024; N *= 2)
        run();
    }
    
    event init (i = 0)
    {
      foreach() {
        double perturb = uper*exp(- sq((x - 0.4)*freq));
        f[] = (x > 0.5);
        p[] = p0 + perturb;
        frho1[] = f[]*rho10*(1. + perturb);
        frho2[] = (1. - f[])*rho20;
        q.x[] = (frho1[] + frho2[])*perturb*sqrt(gamma2*p[]/rho20);
        fE1[] = f[]*p[]/(gamma1 - 1.) + 0.5*sq(q.x[]/(frho1[] + frho2[]))*frho1[];
        fE2[] = (1. - f[])*p[]/(gamma2 - 1.) + 0.5*sq(q.x[]/(frho1[] + frho2[]))*frho2[];
      }
    }
    
    event endprint (t = tend) 
    {
      foreach()
        fprintf (stderr, "%i %f %f\n", N, x, (p[] - p0)/1e-4);
    }
    ZR = 1.
    ZL = 0.164/1.157*sqrt(1.667*1.157/0.164/1.4)
    set ylabel '{/Symbol D}p/{/Symbol D}p_0'
    set xlabel 'x'
    set cblabel '{/Symbol s}/{/Symbol D}x'
    set xrange[0.2:0.4]
    p "log" u 2:3:(0.1*$1) not w l palette, (ZR-ZL)/(ZR+ZL) t 'theory' w l lc 0
    Reflected wave (script)

    Reflected wave (script)

    set xrange[0.5:0.65]
    p "log" u 2:3:(0.1*$1) not w l palette, 1./(ZR+ZL)*2*ZR t 'theory' w l lc 0
    Transmitted wave (script)

    Transmitted wave (script)

    References

    [denner2018]

    Fabian Denner, Cheng-Nian Xiao, and Berend G.M. van Wachem. Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretisation. Journal of Computational Physics, 367:192–234, 2018. [ DOI | http ]