sandbox/ghigo/src/test-particle-color/cylinder-confined-settling.c
Settling cylinder in an long channel for r=1.5
This test case is based on the numerical work of Yu et al., 2002 and Wachs, 2009. We investigate the settling of a cylinder of diameter d in a long channel of aspect ration W/d = 4.
This test case is governed by the density ratio r=\rho_s/\rho and the Reynolds number Re = \frac{UD}{\nu}, where U = \sqrt{\frac{\pi D}{2}(\frac{\rho_s}{\rho} - 1)g} is the “steady” settling velocity.
Due to the added-mass effect for density ratios close to 1, we choose to simulate the cases where r=[1.5,3], leading to a Reynolds number Re=[346.8,693.6].
We solve here the 2D Navier-Stokes equations and describe the cylinder using an embedded boundary.
Notes
A minimum level lmax=12 seems to be necessary to prevent the particle from crashing into the wall.
#include "grid/quadtree.h"
#include "../myembed.h"
#include "../mycentered.h"
#include "../myembed-particle-color.h"
#include "../myperfs.h"
#include "view.h"
Reference solution
#define d (1.)
#define h (4.*(d)) // Width of the channel
#define nu (0.0080880)
#define grav (10.)
#if DENSITY == 1
#define r (3.) // Ratio of solid to fluid density
#else
#define r (1.5) // Ratio of solid to fluid density
#endif // DENSITY
#define uref (sqrt (M_PI*(d)/2.*((r) - 1.)*(grav))) // Characteristic speed
#define tref ((d)/(uref)) // Characteristic time
We also define the shape of the domain.
#define cylinder(x,y) (sq ((x)) + sq ((y)) - sq ((d)/2.))
#define wall(x,w) ((x) - (w)) // + over, - under
void p_shape (scalar c, face vector f, coord p)
{
vertex scalar phi[];
foreach_vertex() {
phi[] = HUGE;
for (double xp = -(L0); xp <= (L0); xp += (L0))
for (double yp = -(L0); yp <= (L0); yp += (L0))
phi[] = intersection (phi[],
intersection ((cylinder ((x + xp - p.x),
(y + yp - p.y))),
intersection (
-(wall (x, (h)/2.)),
(wall (x, -(h)/2.)))));
}
boundary ({phi});
fractions (phi, c, f);
fractions_cleanup (c, f,
smin = 1.e-14, cmin = 1.e-14);
}
We finally define the particle parameters.
const double p_r = (r); // Ratio of solid and fluid density
const double p_v = (p_volume_cylinder ((d))); // Particle volume
const coord p_i = {(p_moment_inertia_cylinder ((d), (r))),
(p_moment_inertia_cylinder ((d), (r)))}; // Particle moment of interia
const coord p_g = {0., -(grav)}; // Gravity, zero
Setup
We need a field for viscosity so that the embedded boundary metric can be taken into account.
face vector muv[];
Since both the walls of the channel and the cylinder are described using the same embedded volume fraction cs, we use the color field p_col to color the cylinder only.
void p_shape_col (scalar c, coord p)
{
vertex scalar phi[];
foreach_vertex() {
phi[] = HUGE;
for (double xp = -(L0); xp <= (L0); xp += (L0))
for (double yp = -(L0); yp <= (L0); yp += (L0))
phi[] = intersection (phi[],
(cylinder ((x + xp - p.x),
(y + yp - p.y))));
}
boundary ({phi});
fractions (phi, c);
}
Finally, we define the mesh adaptation parameters.
#define lmin (8) // Min mesh refinement level (l=8 is 2pt/d)
#define lmax (13) // Max mesh refinement level (l=13 is 64pt/d)
#define cmax (5.e-3*(uref)) // Absolute refinement criteria for the velocity field
int main ()
{
The domain is 128\times 128.
L0 = 128.;
size (L0);
origin (-L0/2., 0.);
We set the maximum timestep.
DT = 1.e-2*(tref);
We set the tolerance of the Poisson solver.
TOLERANCE = 1.e-4;
TOLERANCE_MU = 1.e-4*(uref);
We initialize the grid.
N = 1 << (lmin);
init_grid (N);
run();
}
Boundary conditions
We use no-slip boundary conditions.
u.n[bottom] = dirichlet (0);
u.t[bottom] = dirichlet (0);
u.n[top] = dirichlet (0);
u.t[top] = dirichlet (0);
We give boundary conditions for the face velocity to “potentially” improve the convergence of the multigrid Poisson solver.
uf.n[bottom] = 0;
uf.n[top] = 0;
Properties
event properties (i++)
{
foreach_face()
muv.x[] = (nu)*fm.x[];
boundary ((scalar *) {muv});
}
Initial conditions
We set the viscosity field in the event properties.
mu = muv;
We use “third-order” face flux interpolation.
#if ORDER2
for (scalar s in {u, p, pf})
s.third = false;
#else
for (scalar s in {u, p, pf})
s.third = true;
#endif // ORDER2
We use a slope-limiter to reduce the errors made in small-cells.
#if SLOPELIMITER
for (scalar s in {u, p, pf}) {
s.gradient = minmod2;
}
#endif // SLOPELIMITER
#if TREE
When using TREE and in the presence of embedded boundaries, we should also define the gradient of u at the cell center of cut-cells.
#endif // TREE
As we are computing an equilibrium solution, we remove the Neumann pressure boundary condition which is responsible for instabilities.
for (scalar s in {p, pf}) {
s.neumann_zero = true;
}
We initialize the embedded boundary.
We first define the particle’s initial position.
p_p.x = -1.;
p_p.y = (L0) - 10.*(d);
#if TREE
When using TREE, we refine the mesh around the embedded boundary.
astats ss;
int ic = 0;
do {
ic++;
p_shape (cs, fs, p_p);
ss = adapt_wavelet ({cs}, (double[]) {1.e-30},
maxlevel = (lmax), minlevel = (1));
} while ((ss.nf || ss.nc) && ic < 100);
#endif // TREE
p_shape (cs, fs, p_p);
}
Embedded boundaries
Adaptive mesh refinement
#if TREE
event adapt (i++)
{
adapt_wavelet ({cs,u}, (double[]) {1.e-2,(cmax),(cmax)},
maxlevel = (lmax), minlevel = (1));
We do not need here to reset the embedded fractions to avoid interpolation errors on the geometry as the is already done when moving the embedded boundaries. It might be necessary to do this however if surface forces are computed around the embedded boundaries.
}
#endif // TREE
Outputs
event logfile (i++; t < 150.*(tref))
{
coord Fp, Fmu;
p_shape_col (p_col, (p_p));
boundary ((scalar *) {p_col});
embed_color_force (p, u, mu, p_col, &Fp, &Fmu);
double CD = (Fp.x + Fmu.x)/(0.5*sq ((p_u.y) + SEPS)*(d));
double CL = (Fp.y + Fmu.y)/(0.5*sq ((p_u.y) + SEPS)*(d));
fprintf (stderr, "%d %g %g %d %d %d %d %d %d %g %g %g %g %g %g %g %g %g %g %g %g %g\n",
i, t/(tref), dt/(tref),
mgp.i, mgp.nrelax, mgp.minlevel,
mgu.i, mgu.nrelax, mgu.minlevel,
mgp.resb, mgp.resa,
mgu.resb, mgu.resa,
p_p.x, p_p.y,
p_u.x/(uref), p_u.y/(uref),
p_w.x, p_w.y,
CD, CL,
fabs (p_u.y)*(d)/nu
);
fflush (stderr);
double cell_wall = fabs (p_p.y - (d)/2.)/((L0)/(1 << (lmax)));
if (cell_wall <= 1.)
return 1; // Stop
}
Results
Results for Re = 346.8
reset
set terminal svg font ",16"
set key top right spacing 1.1
set xlabel 'x/d'
set ylabel 'y/d'
set xrange [0.9:3]
set yrange [-60:60]
plot "../data/Wachs2009/Wachs2009-fig5a-r-1p5.csv" u 1:2 w l lw 1 lc rgb "black" t "fig. 5a, Wachs, 2009, r=1.5", \
"../data/Wachs2009/Wachs2009-fig5a-r-3.csv" u 1:2 w l lw 1 lc rgb "brown" t "fig. 5a, Wachs, 2009, r=3", \
'log' u ($14 + 2.):($15 - 78.) w l lc rgb "blue" t "Basilisk, l=13"
Time evolution of the particle’s trajectory (script)
set key bottom right
set xlabel "t/(d/u)"
set ylabel "Re"
set xrange [0:150]
set yrange [0:600]
plot 259.5 w l lw 2 lc rgb "black" t "Wachs, 2009, r=1.5", \
522 w l lw 2 lc rgb "brown" t "Wachs, 2009, r=3", \
'log' u 2:22 w l lc rgb "blue" t "Basilisk, l=13"
Time evolution of the Reynolds number (script)
set key top right
set ylabel "C_D"
set yrange [1:5]
plot 1.785 w l lw 2 lc rgb "black" t "Wachs, 2009, r=1.5", \
1.764 w l lw 2 lc rgb "brown" t "Wachs, 2009, r=3", \
'< cat log | awk -f ../data/Wachs2009/surface.awk' u 1:2 w l lc rgb "blue" t "Basilisk, l=13"
Time evolution of the drag coefficient (script)