sandbox/ghigo/src/test-navier-stokes/sphere-accelerating.c
Sphere accelerating in a quiescent fluid for Re=300
This test case is the 3D counterpart of the test case cylinder-accelerating.c. We study here the flow induced by a uniformly accelerating sphere. Two dimensionless parameters govern this test case:
the Reynolds number Re = u d/\nu;
the non-dimensional acceleration rate \alpha = a d^3/nu^2.
We solve here the Navier-Stokes equations and add the sphere using an embedded boundary.
#include "grid/octree.h"
#include "../myembed.h"
#include "../mycentered.h"
#include "../myembed-moving.h"
#include "view.h"
Reference solution
#define d (1.)
#define nu (1.e-2) // Viscosity
#define Re_s (100.) // Starting particle Reynolds number
#define Re_t (300.) // Terminal particle Reynolds number
#define A (500.) // Adimensional acceleration rate
#define u_s ((Re_s)*(nu)/(d)) // Starting velocity
#define u_t ((Re_t)*(nu)/(d)) // Terminal velocity
#define uref (u_s) // Reference velocity, uref
#define tref (min ((d)/(uref), sqrt ((d)/(A*sq (nu)/cube ((d)))))) // Reference time, tref=min (d/u, sqrt(D/a))
We also define the shape of the domain, and make sure that the embedded boundaries are compatible with periodic boundaries.
#define sphere(x,y,z) (sq ((x)) + sq ((y)) + sq ((z)) - sq ((d)/2.))
void p_shape (scalar c, face vector f, coord p)
{
vertex scalar phi[];
foreach_vertex() {
phi[] = HUGE;
for (double xp = -(L0); xp <= (L0); xp += (L0))
for (double yp = -(L0); yp <= (L0); yp += (L0))
for (double zp = -(L0); zp <= (L0); zp += (L0))
phi[] = intersection (phi[],
(sphere ((x + xp - p.x),
(y + yp - p.y),
(z + zp - p.z))));
}
boundary ({phi});
fractions (phi, c, f);
fractions_cleanup (c, f,
smin = 1.e-14, cmin = 1.e-14);
}
Setup
We need a field for viscosity so that the embedded boundary metric can be taken into account.
face vector muv[];
We define the mesh adaptation parameters.
#define lmin (5) // Min mesh refinement level (l=5 is 2pt/d)
#define lmax (8) // Max mesh refinement level (l=8 is 16pt/d)
#define cmax (1.e-2*(uref)) // Absolute refinement criteria for the velocity field
int main ()
{
The domain is 16\times 16\times 16 and tri-periodic.
L0 = 16.;
size (L0);
origin (-L0/2., -L0/2., -L0/2.);
foreach_dimension()
periodic (left);
We set the maximum timestep.
DT = 1.e-2*(tref);
We set the tolerance of the Poisson solver.
TOLERANCE = 1.e-4;
TOLERANCE_MU = 1.e-4*(uref);
We initialize the grid.
N = 1 << (lmin);
init_grid (N);
run();
}
Boundary conditions
Properties
event properties (i++)
{
foreach_face()
muv.x[] = (nu)*fm.x[];
boundary ((scalar *) {muv});
}
Initial conditions
We set the viscosity field in the event properties.
mu = muv;
We use “third-order” face flux interpolation.
#if ORDER2
for (scalar s in {u, p, pf})
s.third = false;
#else
for (scalar s in {u, p, pf})
s.third = true;
#endif // ORDER2
We use a slope-limiter to reduce the errors made in small-cells.
#if SLOPELIMITER
for (scalar s in {u}) {
s.gradient = minmod2;
}
#endif // SLOPELIMITER
#if TREE
When using TREE and in the presence of embedded boundaries, we should also define the gradient of u at the cell center of cut-cells.
#endif // TREE
We initialize the embedded boundary.
We first define the sphere’s initial position.
foreach_dimension()
p_p.x = (L0)/4.;
#if TREE
When using TREE, we refine the mesh around the embedded boundary.
astats ss;
int ic = 0;
do {
ic++;
p_shape (cs, fs, p_p);
ss = adapt_wavelet ({cs}, (double[]) {1.e-30},
maxlevel = (lmax), minlevel = (1));
} while ((ss.nf || ss.nc) && ic < 100);
#endif // TREE
p_shape (cs, fs, p_p);
We initialize the particle’s speed and acceleration.
foreach_dimension() {
p_u.x = (u_s);
p_au.x = (A)*sq (nu)/cube ((d));
}
}
Embedded boundaries
The cylinder’s position is advanced to time t + \Delta t.
event advection_term (i++)
{
foreach_dimension() {
p_u.x += (p_au.x)*(dt);
p_p.x += (p_u.x)*(dt);
}
}
We verify here that the velocity and pressure gradient boundary conditions are correctly computed.
event check (i++)
{
foreach() {
if (cs[] > 0. && cs[] < 1.) {
// Normal pointing from fluid to solid
coord b, n;
embed_geometry (point, &b, &n);
// Velocity
bool dirichlet;
double ub;
ub = u.x.boundary[embed] (point, point, u.x, &dirichlet);
assert (dirichlet);
assert (ub -
p_u.x == 0.);
ub = u.y.boundary[embed] (point, point, u.y, &dirichlet);
assert (dirichlet);
assert (ub -
p_u.y == 0.);
ub = u.z.boundary[embed] (point, point, u.y, &dirichlet);
assert (dirichlet);
assert (ub -
p_u.z == 0.);
// Pressure
bool neumann;
double pb;
pb = p.boundary[embed] (point, point, p, &neumann);
assert (!neumann);
assert (pb +
rho[]/(cs[] + SEPS)*(p_au.x*n.x + p_au.y*n.y+ p_au.z*n.z) == 0.);
// Pressure gradient
double gb;
gb = g.x.boundary[embed] (point, point, g.x, &dirichlet);
assert (dirichlet);
assert (gb - p_au.x == 0.);
gb = g.y.boundary[embed] (point, point, g.y, &dirichlet);
assert (dirichlet);
assert (gb - p_au.y == 0.);
gb = g.z.boundary[embed] (point, point, g.z, &dirichlet);
assert (dirichlet);
assert (gb - p_au.z == 0.);
}
}
}
Adaptive mesh refinement
#if TREE
event adapt (i++)
{
adapt_wavelet ({cs,u}, (double[]) {1.e-2,(cmax),(cmax),(cmax)},
maxlevel = (lmax), minlevel = (1));
We do not need here to reset the embedded fractions to avoid interpolation errors on the geometry as the is already done when moving the embedded boundaries. It might be necessary to do this however if surface forces are computed around the embedded boundaries.
}
#endif // TREE
Outputs
event logfile (i++; t <= 6.*(tref))
{
double Re = p_u.x*(d)/(nu);
coord Fp, Fmu;
embed_force (p, u, mu, &Fp, &Fmu);
double CDx = (Fp.x + Fmu.x)/(0.5*sq ((uref))*pi*sq ((d)/2.));
double CDy = (Fp.y + Fmu.y)/(0.5*sq ((uref))*pi*sq ((d)/2.));
double CDz = (Fp.z + Fmu.z)/(0.5*sq ((uref))*pi*sq ((d)/2.));
fprintf (stderr, "%d %g %g %d %d %d %d %d %d %g %g %g %g %g %g %g %g %g %g %g %g %g %g\n",
i, t/(tref), dt/(tref),
mgp.i, mgp.nrelax, mgp.minlevel,
mgu.i, mgu.nrelax, mgu.minlevel,
mgp.resb, mgp.resa,
mgu.resb, mgu.resa,
Re,
p_p.x/(d), p_p.y/(d), p_p.z/(d),
p_u.x/(u_s), p_u.y/(u_s), p_u.z/(u_s),
CDx, CDy, CDz);
fflush (stderr);
}
Results
We first plot the time evolution of the Reynolds number Re
set terminal svg font ",16"
set key top right spacing 1.1
set xtics 0,2,100
set xlabel 't*u/d'
set ylabel 'Re'
set xrange[0:6]
plot 'log' u 2:14 w l lw 2 lc rgb "black" notitle
Time evolution of the Reynolds number Re (script)
We then plot the time evolution of the position and velocity of the cylinder.
set ylabel 'p/d'
plot 'log' u 2:15 w l lw 2 lc rgb "black" t 'x', \
'' u 2:16 w l lw 2 lc rgb "blue" t 'y', \
'' u 2:17 w l lw 2 lc rgb "red" t 'z'
Time evolution of the position of the cylinder (script)
set key bottom right
set ylabel 'u/u_s'
plot 'log' u 2:18 w l lw 2 lc rgb "black" t 'u_x', \
'' u 2:19 w l lw 2 lc rgb "blue" t 'u_y', \
'' u 2:20 w l lw 2 lc rgb "red" t 'u_z'
Time evolution of the velocity of the cylinder (script)
We finally plot the time evolution of the drag and lift coefficients C_D and C_L.
set key top right
set ylabel 'C_{D}'
set yrange[-5:5]
plot 'log' u 2:21 w l lw 2 lc rgb "black" t "C_{D,x}", \
'' u 2:22 w l lw 2 lc rgb "blue" t "C_{D,y}", \
'' u 2:23 w l lw 2 lc rgb "red" t "C_{D,z}"
Time evolution of the drag coeffficients (script)