

Basilisk (Gerris) Users' Meeting 2025

Simulation of melting/icing problems with the phase-field method

Yuanpeng Zhang, Haoran Liu, Hang Ding University of Science and Technology of China 8th July 2025

Research Background and Present Scenario

Limitations of Phase Field Models and Improvements

Verification Cases

- Stefan Problem
- Rayleigh-Bénard Convection
- Ice Growth on Cylinder in Flow
- Vertical Convection

Conclusion & Outlook

Research Background

Melting and icing phenomena are common in nature and human life.

Smedsrud, L. H. *et al.* (2022) *Rev. Geophys.*

Atlantic inflow cooling and sea ice variation Cenedese, C. *et al.* (2023) *Annu. Rev. Fluid Mech.*

> Iceberg Melting

Icing on aircraft wings

Phase-field methods have been widely adopted for studying melting and icing problems.

Weady, S. *et al.* (2022) *Phys. Rev. Lett.*

Yang, R. *et al.* (2023) J. Fluid Mech.

ice front $\phi = 0.5$

Phase-field methods can yield non-physical results.

Advantages:

- Easy topological change handling
- Exact energy conservation
- Easy multiphase extension

Disadvantages:

Non-physical motion of the ice front

- High local curvature
- Low Stefan number

Traditional phase-field methods have difficulty with accurate temperature boundary conditions at the ice front.

Navier-Stokes Equations $\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) = -\nabla P + \frac{1}{Re}\nabla^2 u - \frac{\rho}{Fr}e_g + f_p$ $\nabla \cdot u = 0$

Energy Equation

 $\frac{\partial \theta}{\partial t} + \nabla \cdot (\boldsymbol{u}\theta) = \frac{1}{\rho C_p} \nabla [k_{\mathrm{T}} \nabla \theta] - St \frac{\lambda_{\rho}}{\rho C_p} \frac{\partial \phi}{\partial t}$

Phase-Field Model (Allen-Cahn Equation)

$$\frac{\partial \phi}{\partial t} = M \left[\nabla^2 \phi - \frac{1}{4\epsilon^2} \frac{dg}{d\phi} \right] + \frac{M}{\epsilon^2} \frac{df}{d\phi} (\theta - \theta_m)$$

$$\mathbf{I}$$
at the ice front: $\theta_{\Gamma} \neq \theta_m$

Challenges faced by traditional phase field methods

- Small-scale structures are smoothed
- Ice and water cannot coexist at melting point

Original Phase-Field Model:

$$\frac{\partial \phi}{\partial t} = M \left[\nabla^2 \phi - \frac{1}{4\epsilon^2} \frac{dg}{d\phi} \right] + \frac{M}{\epsilon^2} \frac{df}{d\phi} (\theta - \theta_m)$$

Improved Phase-Field Model:

$$\frac{\partial \phi}{\partial t} = M \nabla^2 \phi - M \nabla \cdot \left[\frac{\phi(1-\phi)}{\sqrt{2}\varepsilon} \mathbf{n} \right] + \frac{M}{\varepsilon^2} \phi (1-\phi) \left(\theta - \theta_m^{eff} \right)$$

Remove curvature effect

Introduce effective melting point θ_m^{eff}

• At the ice front:

$$\theta_{\Gamma} - \theta_m = 0$$

- Maintain the original equilibrium form and stability: $\phi = \frac{1}{2} \left[1 + \tanh\left(\frac{x}{2\sqrt{2}\varepsilon}\right) \right]$
- Energy conservation.

- > Initialization: Set $\theta_m^{eff,0} = \theta_m$
- > Prediction step :
- Advance ϕ^n using $\theta_m^{eff,n}$ to obtain ϕ^* ;
- Compute the temperature at the ice front and use its deviation from the melting point to update the effective melting point.

$$\theta_{\Gamma} = \theta_{i,j} + l \nabla \theta_{i,j} \cdot \boldsymbol{n}_{i,j}$$
$$\theta_{m}^{eff,n+1} = \theta_{m}^{eff,n} - (\theta_{\Gamma} - \theta_{m})$$

Correction step:

• Advance ϕ^{n+1} using the updated effective melting point $\theta_m^{eff,n+1}$

The improved phase-field model accurately captures small-scale structures.

Melting of an icicle

Uniform initial temperature: $\theta = \theta_m$

 Improved Phase-Field Model Original Phase-Field Model

Improved phase-field model removes curvature effects and ensures ice-water coexistence.

> Ice–Water Coexistence Validation

• Ice circle radius evolution

Uniform initial temperature: $\theta = \theta_m$

• Ice circle radius change ratio

Good agreement with previous results

12

• Average water height at steady state

Adaptive mesh refinement near the ice front

Inflow temperature $T_{\infty} = 2.5^{\circ}C$

Cooled pipe temperature -7.5° C Inflow velocity V_{∞} = 0.01m/s

Ice front profile comparison

Suitable for **3D** simulations

- ➢ An improved phase-field model is proposed to eliminate curvature-induced artifacts and introduce an effective melting point, ensuring that the temperature at the ice front equals the melting point.
- The improved model demonstrates superior performance in both classical Stefan problems and complex flow simulations.
- \succ The code will be released soon on Sandbox.

"The development of an improved phase-field method for simulating freezing/melting problems in turbulent environments" to be submitted to the *J. Comput. Phys.*

Outlook

Future Work: ice-water phase transition in the presence of air

> Droplet freezing

	ho [kg/m ³]	μ [Pa·s]	$\alpha \ [m^2/s]$	$C_p [J/(kg^{\circ}C)]$
Air	1.29	1.70×10^{-5}	2.00×10^{-5}	1.00×10 ³
Water	1.00×10^{3}	1.70×10^{-3}	1.32×10^{-7}	4.21×10^{3}
Ice	9.17×10^{2}	1.70×10^{-3}	1.18×10^{-6}	2.03×10^{3}

• Ice front profile comparison

Basilisk (Gerris) Users' Meeting 2025

Thank You for Your Attention

Yuanpeng Zhang zhangyuanpeng@mail.ustc.edu.cn

University of Science and Technology of China