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Sensitivity of upper ocean state to air-sea 
fluxes (tested with Basilisk’s GOTM implementation)
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Previous work: broadband breaking waves (multilayer)
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Wu, J., Popinet, S., and Deike, L. (2023). Breaking wave field statistics with a multilayer numerical framework. Journal of Fluid Mechanics. 
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Air-sea fluxes and their representation
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Momentum flux (τ𝗑, τ𝗒) ≡ (−𝗐′ 𝗎′ , − 𝗐′ 𝗏′ )Sensible heat flux  
Latent heat flux 

𝖰𝖲 ≡ − 𝗐′ 𝖳′ 

𝖰𝖫 ≡ − 𝗐′ 𝗊′ 

We need air-sea flux algorithms in: 

• Forced GCM (flux product): observables (in-situ or satellite) -> fluxes (hard to observe) 

• Coupled GCM: prognostic variables -> fluxes as boundary conditions

State variables: 

Wind speed  

Air temp.  and humidity  

SST  

Current speed  

…

Ua

Ta qa

To

Uo

(At some height e.g. 10m)



Sensible heat flux 
 

Latent heat flux 
 

Momentum flux 

𝖰𝖲 ≡ − 𝗐′ 𝖳′ 

𝖰𝖫 ≡ − 𝗐′ 𝗊′ 

(τ𝗑, τ𝗒) ≡ (−𝗐′ 𝗎′ , − 𝗐′ 𝗏′ )

Wind speed  
Air temp.   
Humidity  
SST  
Current speed  
…

Ua
Ta
qa

To
Uo

Observation: NOAA PSL ship ~10,000 samples, hourly-averaged covariance   + Neural Networks (NN) 
No high-fidelity simulation yet.

𝗐′ 𝗎′ , 𝗐′ 𝗏′ , 𝗐′ 𝖳′ , 𝗐′ 𝗊′ 

Flux algorithm

Data-driven probabilistic air-sea flux algorithm

Existing bulk air-sea flux algorithms (COARE, ECMWF, etc.): 

• Based on Monin-Obukhov similarity theory, with parameters 
fitted to observations 

• Crudely simplified (might have bias) 

• Designed to represent the averaged effects
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Flux algorithm

Data-driven probabilistic air-sea flux algorithm

Existing bulk air-sea flux algorithms (COARE, ECMWF, etc.): 

• Based on Monin-Obukhov similarity theory, with parameters 
fitted to observations 

• Crudely simplified (might have bias) 

• Designed to represent the averaged effects

Statistical improvements 
(especially for heat fluxes)



Data-driven probabilistic air-sea flux algorithm

Edson et al. 2013

Momentum flux as a function of wind speed

Existing air-sea flux algorithms are designed to represent the mean given the inputs. 
Can we have an algorithm that reflects the uncertainty/variability in air-sea fluxes?



Data-driven probabilistic air-sea flux algorithm
1 input 2 inputs



Data-driven probabilistic air-sea flux algorithm

Negative log likelihood loss

1 input 2 inputs

 X = (𝖴𝖺, 𝖳a, 𝖳o, 𝖱𝖧, 𝗉𝖺)
NN

Conditional mean and std of 𝖰𝖲, 𝖰𝖫, τ𝗑, τ𝗒



Stochastic air-sea flux parameterization

Summer Fall

Stochastically perturbed fluxes

ϵ𝗇+𝟣 = 𝗋ϵ𝗇 + (𝟣 − 𝗋𝟤)𝟣/𝟤η𝗇

Noise generated by 
auto-regressive 
process AR(1):

η𝗇 ∼ 𝒩(𝟢, σ𝗇)



Sensitivity test (response of upper ocean to changing fluxes)
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• Single column model, ocean only 

• General Ocean Turbulence Model (GOTM, Lars Umlauf, 

Hans Burchard, and Karsten Bolding. 2018.) 

• Basilisk’s GOTM interface (http://basilisk.fr/src/gotm/) 

• Ocean Papa test case (http://basilisk.fr/src/test/ows_papa.c)

Vertical mixing: KPP or k-epsilon

Governing equations

…

O(1m)

O(10km)

KPP: K profile parameterization (mixing length model by Large et al. 1994)

k-epsilon: two-equation closure (deemed expensive by ocean modelers!)

O(100m)



Implementation in a single-column model of upper ocean
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• Mooring records of 2011, 2012, 2015, 2016 

• Surface fluxes imposed as boundary condition (also affect 
vertical mixing parameterization) 

• Running the model in ‘forced’ way; fluxes computed offline; 
only modifying the (more uncertain) heat fluxes.

Long-term mooring records of state variables  
No direct flux measurements 

Ocean Weather Station Papa 

Vertical mixing: KPP or k-epsilon

Governing equations

ANN or Baseline COARE

Most time was spent on engineering file I/O
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KPP (dt=1hr)

k-epsilon (dt=10min)

Issues with weird mixing
Dramatic mixing 

✅



Comparing state (SST and MLD)
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• Limitation of ignoring horizontal advection. Monthly restart to reduce drifting.  

• Focus on the response to different flux forcing.

ANN - baseline

A typical annual cycle
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Smaller magnitude but seasonal response

Change flux 
parameterization

Change vertical 
mixing 
parameterization

2011, 2012, 2015, 2016



Effects of stochastic parameterization
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Effects of noise: 

• Noise-induced drift  

• Enhanced variability, i.e. ensemble 
spread

(Low cost of 1D models allows for many ensemble runs.)



Effects of stochastic parameterization
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Effects of noise: 

• Noise-induced drift (not observed) 

• Enhanced variability, i.e. ensemble 
spread (yes, but of course)

Spread in MLD



Summary

• A probabilistic model for air-sea fluxes: 

• Compact NNs (  parameters) and bulk inputs 

• Mean - similar to bulk algorithm, slightly better statistical correlation 
to observations 

• Variance - UQ and stochastic parameterization

𝒪(𝟣𝟢𝟥)
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Manuscript: 
Wu, J., Perezhogin, P., Gagne., D.J., Reichl, B., Subramanian, A., Thompson, E., and Zanna, L., Data-Driven Probabilistic Air-
Sea Flux Parameterization, https://arxiv.org/abs/2503.03990

• Implementation in single-column forced upper ocean: strong seasonality in response. 

• Limitation of single column model -> coupled general circulation models. Large 
spread can have implications when coupled to nonlinear processes. 

• Some short-term to-dos: 

• Perturbed momentum flux; 

• Online computation of heat fluxes (with evolving SST). Python interface for calling 
neural networks?

https://arxiv.org/abs/2503.03990
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