

BGUM 2025

Numerical study of drop impact on concave surface: spread, jet, and splash

Supervisors Arezki BOUDAOUD Christophe JOSSERAND **Doctoral student** Datong WANG

Motivation: reproduction mechanism of plants and fungi

Courtesy of Ana-Maria Bratu & Stéphanie DREVENSEK, LadHyx

Jet formation after the drop impact

Cross-section of the splash cup

 Raindrops and splash cup diameters are only a few millimeters, yet the resulting jet can propel reproductive units several meters away.

• Hypothesis: concave surface is the key to the jet formation.

Courtesy of Valentin LAPLAUD, LadHyx

Bio mimical experiments and 2D simulations with Basilisk

3D print bio mimic splash cup

Experimental reproduction of jet formation formation

Pressure filed simulation

 $Re = 1.22 \times 10^4$, We = 781

Courtesy of Ana-Maria Bratu, LadHyx

• The impact process mainly has two stages:

Stage 1: Drop spreading alongside the solid, then the water converges in the bottom of the cup. Stage 2: Water is propelled, leading to the jet formation.

• The liquid spreading in Stage 1 is important to the jet properties.

Adaptation of Wagner's classical spreading model

Adaptation of Wagner's spreading model in oblique impact

Estimation of R_s^{*} based on peak tangential velocity locations

Assumption: Adding a uniform tangential velocity component has negligible effect on the impact dynamics.

Validation of the assumption for oblique impact: effect of geometry

 $(R_1^*-R_2^*)^2$ as a function of $\cos(\theta)\,t^*$

- $(R_1^* R_2^*)^2$ is proportional to $\cos(\theta) t^*$ when $t^* \ll 1$.
- Curves collapse for varying surface slopes.

Validation of the assumption for oblique impact: effect of geometry

- $|R_1^* + R_2^*|$ is proportional to $sin(\theta) t^*$ for a sustained time interval.
- Curves collapse for varying surface slopes.

Validation of the assumption for oblique impact: effect of Re

- Consistent with theoretical expectations, in high Re regime $(R_1^* - R_2^*)^2 \sim \cos(\theta) t^*$, $|R_1^* + R_2^*| \sim \sin(\theta) t^*$.
- Wagner's spreading theory can be extended to oblique impact.

Adaptation of Wagner's spreading model in corner impact

Pressure field for different initial liquid volume above the solid V_a , $t^* = 0.13$

Assumption: An effective impact diameter D_e positively correlated with V_a/V_{total} is introduced such that the following equation holds.

$$D_e \leq D$$
, $R_s^* \sim \sqrt{\frac{D_e}{D}} t^* \leq R_{s,normal}^* \Rightarrow (R_s^*)^2 \sim t^*$

Validation of the assumption for corner impact

- $(R_s^*)^2$ is proportional to t^* when $t^* \ll 1$.
- For large V_a/V_{total} , R_s^* closely follows the normal impact case, the corner effect is negligible when $t^* \ll 1$.
- R_s^* grows more slowly over time in cases with lower V_a/V_{total} .

Liquid pressure near the self-similar region

0.8

0.7

Balancing the pressure force with the momentum entering the self-similar region.

 $V_a/V_{total} = 34.25\%$ $V_a/V_{total} = 42.06\%$

 $V_a/V_{total} = 50.00\%$

 $1/(P^*)^2$ as a function of t*

- At the very early stage ($t^* \ll 1$) of impact, $(P^*)^2$ is proportional to t^* for most cases.
- A smaller V_a/V_{total} leads to a lower pressure.
- When V_a/V_{total} is small enough ,the hydrodynamic influence outside the impacted region becomes non-negligible.
- Wagner's spreading theory can be extended to corner impacts. But the pre-factor D_e requires further quantitative analysis.

Conclusions

- Generalization of Wagner's theory to oblique and corner impact.
- Oblique impacts with different surface slopes follow the same spreading mechanism. After rescaling time with cos/sin, R_s^* approximately collapse onto a single curve.
- For corner impacts, reducing V_a has a similar effect to using a smaller droplet, resulting in decreased R_s^* and lower pressure in the impact zone.

Outlooks

- Comprehensive scaling and quantitative analysis of D_e .
- Simulate the fluid forces acting on the wet area and compare the results with Wagner's solution.
- Initiate the study of oblique impacts on solids with corners.

Thank you very much for your listening and suggestions.