

High Meadows Environmental Institute MECHANICAL & AEROSPACE ENGINEERING

Progress in wind-forced breaking waves

Nicolò Scapin^{1,2}, Jiarong Wu^{1,*}, J. Thomas Farrar³, Bertrand Chapron⁴, Stéphane Popinet⁵ and Luc Deike^{1,2}

Basilisk (Gerris) Users' Meeting 2025 (BGUM) Oxford University, UK (July 7th - 9th, 2025)

- 1. Department of Mechanical and Aerospace Engineering (MAE), Princeton University, US
- 2. High Meadows Environmental Institute (HMEI), Princeton University, US
- 3. Woods Hole Oceanographic Institution (WHOI), US
- 4. IFREMER, Univ. Brest, CNRS, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), France
- 5. CNRS, Institut Jean Le Rond d'Alembert Sorbonne Université, France

* Current affiliation: Courant Institute of Mathematical Sciences, New York University, US

Wind-forced breaking waves

Waves and wave breaking modulate the exchanges of momentum, energy and mass at the ocean-atmosphere interface

Wind-forced breaking waves

Wind-wave interaction problem: physical parameters

Fully-resolved direct numerical simulations
 using VoF (src/vof.h) to capture
 the wave field and the two-phase modules to
 solve the flow field
 (navier-stokes/centered.h and
 navier-stokes/conserving.h)

<u>11 physical parameters with 3 units ([M], [L], [T])</u> $\rho_a, \rho_w, \mu_a, \mu_w, (L_0 - h_W), h_W, \lambda, a_0, \sigma, |g|, u_*$ Π theorem

8 physical dimensionless parameters

- **Density ratio:** ρ_a/ρ_w
- Ratios of length scales: $(L_0 h_W)/\lambda$, h_W/λ
- Friction Reynolds number: $Re_{*,\lambda} = \frac{\rho_a u_* \lambda}{\mu_a}$

• Wave Reynolds number:
$$Re_{wave} = \frac{\rho_w c_w}{\mu_w}$$

• **Bond number:**
$$Bo = \frac{|g|(\rho_w - \rho_a)\lambda^2}{4\pi^2\sigma}$$

- Initial wave steepness: a_0k
- **Friction velocity over wave speed:** $\frac{u_*}{c}$

Configuration set-up

- Initial condition in Air: fully-developed turbulence (generated with a precursor simulation)
- Initial condition in Water: potential flow solution of a third-order Stokes wave.

Computational domain:

- $4\lambda \times 4\lambda \times 4\lambda$, $h_w \approx 0.64\lambda$, $L_0 h_w \approx 3.36\lambda$
- x-y: periodic directions; z: free-slip conditions;
- Grid resolution: $L^{10} L^{11}$ (i.e. $1024^3 2048^3$);

We fix:

$$Re_* = 720, Re_w = 2.5 \cdot 10^4, Bo = 200, a_0k = 0.3$$

We vary (in the high-wind speed regime):

$$\frac{u_*}{c} = 0.3 - 0.4 - 0.5 - 0.7 - 0.9;$$

5

Part 1: Exchanged momentum fluxes (1/2)

Dimensionless momentum flux, CD

Part 1: Exchanged momentum fluxes (2/2)

Dimensionless momentum flux, CD

--> C_D initially increases with U_{10} , but at higher wind speed, it develops a saturation.

--> Large uncertainty and data scattering as U_{10} increases.

<u>Questions:</u>

- (a) What's the **physical mechanism(s)** behind the non-linear variation of C_D with U_{10} ?
- (b) What's the role of **wave breaking**?

(1) Affects the exchanged momentum, i.e. *pressure and viscous forces*, between air and water;
(2) Modulates the airflow;

Momentum fluxes/exchanged forces

the compensation for pressure force comes from the change in the mean flow and partially from the Airflow modulation viscous contribution

Airflow modulation

Streamwise velocity profile (in a *wave-following coordinate*) during the **pre-breaking** G_1 , **breaking** and **post-breaking stages** $G_{2,a}$

Aerodynamic drag coefficient, $C_{D,a}$, over breaking waves

During the breaking: (1) reduction of the pressure force, (2) flow acceleration in the region close to the wave field $2\overline{E}$.

$$C_{D,a} = \frac{2F_p}{\rho_a \Gamma \overline{U}^2 \ (z = \frac{\lambda}{2})}$$

<u>Growing stages</u>: $C_{D,a}$ continuously increases (larger pressure force with u_*/c)

Breaking stages: during the growing stage, $C_{D,a}$ continuously increases with. During the breaking stage, $C_{D,a}$ decreases with u_*/c

<u>Mean Saturation</u> of $C_{D,a}$ is observed when wave breaking is accounted for.

Drag coefficient over breaking waves

Using the classical definition of the drag coefficient in physical oceanography

- Qualitatively similar trend to the aerodynamic drag coefficient C_{D,A};
- **Drag saturation** and **reduction** occurs when the **wave breaking dynamics** is included.
- Remarkable agreement with laboratory experiments at similar u_*/c .
- Small deviations attributed to (a) multiscale nature of the wave field in the lab, (b) several hundreds of breaking cycles

12

Part 2: Wave breaking-induced dissipation

when wave break: energy is dissipated and transfer into the water column

How wave breaking modulate the underwater dissipation?

Wave breaking-induced dissipation (1/2)

Dissipation negligible during G_1

Dissipation starts to become larger during B_1 and is transported in the water column during B_2 Wave breaking promotes the transition of the dissipation profile!

Scaling the underwater energy dissipation (1/3)

Sutherland and Melville (JPO, 2015) proposed to rescale ε as

Scaling the underwater energy dissipation (2/3)

The validity of the scaling proposed in Sutherland and Melville (JPO, 2015) lead to two observations:

The wall-layer scaling argument is an incorrect scaling for the turbulent dissipation

Wall-layer scaling $\varepsilon_{wl} = \frac{u_*^3 (\rho_a / \rho_w)^{0.5}}{\kappa} \frac{u_*^3}{z}$

Present scaling
$$\frac{\rho_w \varepsilon(z) H_s}{S_{in}} = A \frac{H_s}{z} \to \varepsilon(z) = A \frac{\rho_a}{\rho_w} \frac{u_*^2 c}{z}$$

Balanced between wind input and energy dissipation

$$\frac{\rho_{w}\varepsilon(z)H_{s}}{S_{in}} = A\frac{H_{s}}{z} \qquad \longrightarrow \qquad \int_{-h_{0}}^{\eta} \varepsilon(z)dz \sim S_{in}$$
$$\underbrace{\int_{-h_{0}}^{\eta} \varepsilon(z)dz \sim S_{in}}_{S_{ds}}$$
$$S_{in} \sim S_{ds}$$

Scaling the underwater energy dissipation (3/3)

$$S_{in} \sim S_{ds} = \frac{\rho_w}{g} \int b\Lambda(c) c^5 dc = \frac{\rho_w}{g} \frac{bc^5}{L_c}$$

Philips (JFM 1985)

- A very good collapse of the dissipation profiles within 0.1*H_s*
- Given $S_{in} \sim S_{ds}$, this dissipationbased scaling is fully consistent with the wind-input based scaling.

Consistent with our understanding of wave breaking:

wave breaking occurs when fluid inertia overcome restoring forces. The cause, e.g. wind, sets the onset of breaking. Once breaking starts, the energy loss is independent from the cause

Conclusions

Momentum fluxes

- Direct numerical simulations of wind-forced wave breaking at high wind speed
- Analysis performed by separating the growing and the breaking cycle
- Nonmonotonous behaviour of the pressure force which reduces after the breaking stage (even without droplets). Reduction is linked to the airflow modulation
- Saturation of $C_{D,a}$ and C_D controlled by wave breaking dynamics

Breaking-induced dissipation

- Wave breaking is sufficient to promote the transition of ε to $\sim z^{-1}$
- New scaling law to unify the dissipation profile across different u_*/c

N. Scapin et al., "*Momentum fluxes in wind-forced breaking waves*", Journal of Fluid Mechanics N. Scapin et al., "*Growth and dissipation in wind-forced breaking waves*", submitted to Geophysical Research Letters

Simulations files are not in the sandbox yet, but they will be added soon!

High Meadows Environmental Institute

MECHANICAL & AEROSPACE ENGINEERING

Numerical methodology

Direct solution of (1) continuity equation (incompressibility constraint) with (2) the momentum equation for a **two-phase system**

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\rho(\partial_t \boldsymbol{u} + \nabla \cdot (\boldsymbol{u}\boldsymbol{u})) = -\nabla p + \nabla \cdot (\mu(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)) + \sigma \kappa \delta_{\Gamma} + \rho \boldsymbol{g}$$

Main features of the numerical algorithm:

- Sharp-interface formulation for the interface advection (geometric VoF)
- Momentum consistent formulation to ensure robustness at high density ratio
- Well-balanced formulation to avoid artificial parasitic currents at the interface
- Adaptive mesh-refinement (AMR) techniques based on wavelet transformation