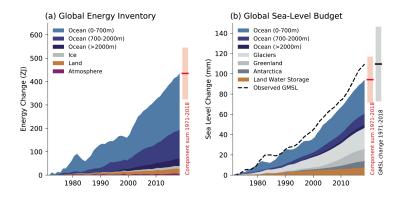
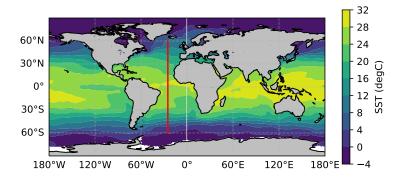

THE GULF STREAM AND NORTH ATLANTIC CIRCULATION IN CHANGING CLIMATE

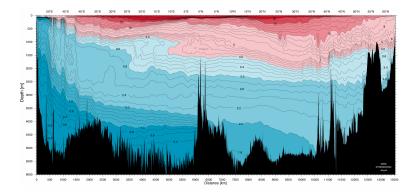

Lennard Miller^{1,2}, Antoine Venaille², Bruno Deremble¹, Stephane Popinet³

 $^1 {\rm Univ.}$ Grenoble Alpes, $^2 {\rm ENS}$ Lyon, $^3 {\rm Sorbonne}$ Univ.

Basilisk Meeting - Oxford - July 2025

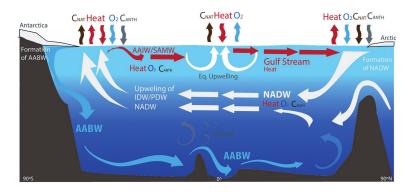


WHY DO WE CARE ABOUT THE OCEAN?


- Most of the excess heat is absorbed by the ocean
- Sea level rise will have a tremendous impact on humanity

TEMPERATURE DISTRIBUTION IN THE OCEAN (SURFACE)

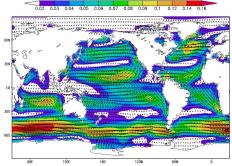
- Warm at the equator, cold at the pole (heated by the sun)
- Redistribution of heat by ocean currents


TEMPERATURE DISTRIBUTION IN THE OCEAN (VERTICAL)

- ► Thin warm layer at the surface
- Unstratified (well mixed) deep ocean

WOCE temperature section

SIDE VIEW OF THE OCEAN CURRENTS

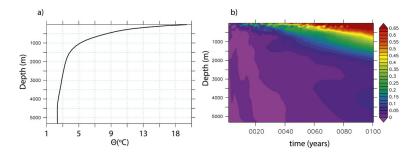


Key role played by the interfaces (Boundary conditions)

- Air sea interaction
- Sea topography interaction
- Water ice interaction

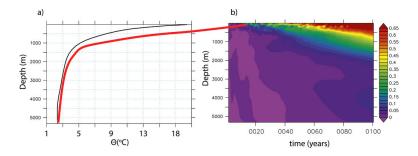
HORIZONTAL CIRCULATION

Annual Mean surface wind stress


Unit: N/m2, from Surface Marine Data (NODC)

- Surface atmospheric winds drive the ocean "gyre" circulation
- North Atlantic currents organized in gyres separated by an energetic gulf stream

HOW WILL THESE CURRENTS EVOLVE IN THE CONTEXT OF GLOBAL WARMING?


EVOLUTION OF THE TEMPERATURE

- The surface warms faster than the deep ocean
- We expect a more surface intensified stratification
- We are going to exaggerate this trend to capture the changes (not realistic).

Figure from Palter et al. (2014)

EVOLUTION OF THE TEMPERATURE

- The surface warms faster than the deep ocean
- We expect a more surface intensified stratification
- We are going to exaggerate this trend to capture the changes (not realistic).

Figure from Palter et al. (2014)

NORTH ATLANTIC MODEL WITH BASILISK

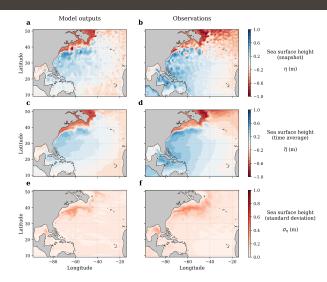
We use the Multi layer shallow water solver:

$$\partial_t h_k + \nabla \cdot (h\mathbf{u})_k = 0,$$

$$\partial_t (h\mathbf{u})_k + \nabla \cdot (h\mathbf{u}\mathbf{u})_k = -gh_k \nabla(\eta) - \nabla(hq)_k + [q\nabla z]_k$$

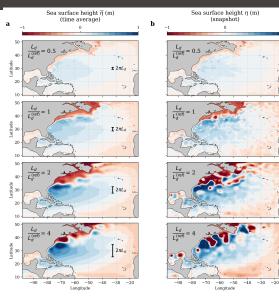
$$\stackrel{z}{=} \underbrace{\frac{h_{n-1}(\mathbf{x},t) \quad \mathbf{u}_{n-1}(\mathbf{x},t)}{h_k(\mathbf{x},t) \quad \mathbf{u}_k(\mathbf{x},t)} \frac{\eta(\mathbf{x},t)}{\psi_k(\mathbf{x},t)} \underbrace{\hat{z}_{n-3/2}(\mathbf{x},t)}_{\hat{z}_{n-3/2}(\mathbf{x},t)} \underbrace{\hat{z}_{n-3/2}(\mathbf{x},t)}_{\hat{z}_{n-1/2}(\mathbf{x},t)} \underbrace{\hat{z}_{n-3/2}(\mathbf{x},t)}_{\hat{z}_{n-1/2}(\mathbf{x},t)} \underbrace{\hat{z}_{n-3/2}(\mathbf{x},t)}_{\hat{z}_{n-1/2}(\mathbf{x},t)} \underbrace{\hat{z}_{n-3/2}(\mathbf{x},t)}_{\hat{z}_{n-3/2}(\mathbf{x},t)} \underbrace{\hat{$$

• Main variables are u, h.

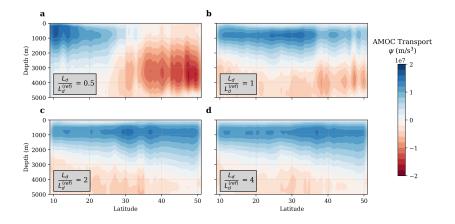

► We specify the vertical density profile (density of each layer)

x

http://basilisk.fr/src/examples/ocean.h


VALIDATION WITH OBSERVATIONS

- Validation of the model with satellite altimetry data (AVISO)
- Mean and variance Sea Surface Height compare well with observations.


http://basilisk.fr/src/examples/gulf-stream.c

NEW REGIMES - HORIZONTAL CIRCULATION

- Less stratified
- Reference run
- More stratified

NEW REGIMES – VERTICAL CIRCULATION

- Vertical circulation is also changing with stratification.
- Link Gulf-Stream AMOC is not trivial
- Work in progress

CONCLUSION

- Stratification governs the stability of the Gulf Stream.
- We showed dramatic regime changes driven by unrealistic stratification.
- In the context of global warming, the gulf stream will not change much.
- The AMOC will weaken but due to other processes not discussed here.
- Consequences for eddy parameterizations (WIP with C. Merchant and F. Cooper).