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III - 3D-AXI Recoil under a dipolar flow 

• Self-similar solutions indexed by 


• Capillary waves  when 


• °:  
capillary flow moves forward  the liquid


• : counterbalances the capillary flow
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Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

Extended Results of S&L
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No crossing of the singularity,  
which has yet to be addressed!

Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16



12

IV - Conical Collapsing Cavities IV.1 - Context

Zeff et al. (2000). Singularity dynamics in curvature collapse and jet eruption on fluid surface. Nature 403 

‣ Topological diversity of cavities

‣ When the flow viscosity increases: blunt tip of the cone

‣ Jet velocity does not diverge



12

IV - Conical Collapsing Cavities IV.1 - Context

Zeff et al. (2000). Singularity dynamics in curvature collapse and jet eruption on fluid surface. Nature 403 

‣ Topological diversity of cavities

‣ When the flow viscosity increases: blunt tip of the cone

‣ Jet velocity does not diverge



12

IV - Conical Collapsing Cavities IV.1 - Context

Zeff et al. (2000). Singularity dynamics in curvature collapse and jet eruption on fluid surface. Nature 403 

‣ Topological diversity of cavities

‣ When the flow viscosity increases: blunt tip of the cone

‣ Jet velocity does not diverge



12

IV - Conical Collapsing Cavities IV.1 - Context

Zeff et al. (2000). Singularity dynamics in curvature collapse and jet eruption on fluid surface. Nature 403 

‣ Topological diversity of cavities

‣ When the flow viscosity increases: blunt tip of the cone

‣ Jet velocity does not diverge

a
Self-Similar



12

IV - Conical Collapsing Cavities IV.1 - Context

Zeff et al. (2000). Singularity dynamics in curvature collapse and jet eruption on fluid surface. Nature 403 

‣ Topological diversity of cavities

‣ When the flow viscosity increases: blunt tip of the cone

‣ Jet velocity does not diverge

a

b

Self-Similar



12

IV - Conical Collapsing Cavities IV.1 - Context

Zeff et al. (2000). Singularity dynamics in curvature collapse and jet eruption on fluid surface. Nature 403 

‣ Topological diversity of cavities

‣ When the flow viscosity increases: blunt tip of the cone

‣ Jet velocity does not diverge

a

b

c
Self-Similar Bubble  

Pinchoff



12
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Zeff et al. (2000). Singularity dynamics in curvature collapse and jet eruption on fluid surface. Nature 403 

‣ Topological diversity of cavities

‣ When the flow viscosity increases: blunt tip of the cone

‣ Jet velocity does not diverge

Zeff’s “ultraviolet cutoff”: viscosity as a regularization mechanism? 

a

b

c
Self-Similar Bubble  

Pinchoff
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With the change of variables:

(t − t0) → (t0 − t)

⇒ u → − u, μ̃0 → − μ̃0
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finite-time cone

Time reversal: cavity collapse  
singular at finite-time

Cavity collapses of bursting bubbles 

are the time reversal of recoiling 

cones with °θ0 > 90

Dipolar flow  Draining flow↔

Test at: | μ̃0 | = 50
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~ water: 100 ps / oil: 100 µs



27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5
t̃

≠4

≠2

0

2

4

6

8

10

Ÿ̃

1

2 Â�max

2≠1

Inviscid

15

IV - Conical Collapsing Cavities IV.4 - Viscous Simulations Settings

Goal: to catch a transitory regime towards viscous effects close to t0

2. Take a size domain      
    [to start in the cap. reg.]

≫ L = ℓμ → L = 230 ℓμ

3. Take a grid resolution  (  20 pts) ≪ ℓμ ≈ → Δ ≈ 0.05 ℓμ

1. Problem non-dimensionalized with viscous scales:

ℓμ =
μl2

ρl σ
~ water: 10 nm / oil: 100 µm

tμ =
μl3

ρl σ2
~ water: 100 ps / oil: 100 µs



27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5
t̃

≠4

≠2

0

2

4

6

8

10

Ÿ̃

1

2 Â�max

2≠1

Inviscid

15

IV - Conical Collapsing Cavities IV.4 - Viscous Simulations Settings

Goal: to catch a transitory regime towards viscous effects close to t0
ρg

ρl
= 10−3 ;

μg

μl
= 10−2 ; ℓμ = 1 ; tμ = 1

2. Take a size domain      
    [to start in the cap. reg.]

≫ L = ℓμ → L = 230 ℓμ

3. Take a grid resolution  (  20 pts) ≪ ℓμ ≈ → Δ ≈ 0.05 ℓμ

1. Problem non-dimensionalized with viscous scales:

ℓμ =
μl2

ρl σ
~ water: 10 nm / oil: 100 µm

tμ =
μl3

ρl σ2
~ water: 100 ps / oil: 100 µs



27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5
t̃

≠4

≠2

0

2

4

6

8

10

Ÿ̃

1

2 Â�max

2≠1

Inviscid

15

IV - Conical Collapsing Cavities IV.4 - Viscous Simulations Settings

Goal: to catch a transitory regime towards viscous effects close to t0
ρg

ρl
= 10−3 ;

μg

μl
= 10−2 ; ℓμ = 1 ; tμ = 1

2. Take a size domain      
    [to start in the cap. reg.]

≫ L = ℓμ → L = 230 ℓμ

3. Take a grid resolution  (  20 pts) ≪ ℓμ ≈ → Δ ≈ 0.05 ℓμ

1. Problem non-dimensionalized with viscous scales:

ℓμ =
μl2

ρl σ
~ water: 10 nm / oil: 100 µm

tμ =
μl3

ρl σ2
~ water: 100 ps / oil: 100 µs



27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5
t̃

≠4

≠2

0

2

4

6

8

10

Ÿ̃

1

2 Â�max

2≠1

Inviscid

15

IV - Conical Collapsing Cavities IV.4 - Viscous Simulations Settings

Goal: to catch a transitory regime towards viscous effects close to t0
ρg

ρl
= 10−3 ;

μg

μl
= 10−2 ; ℓμ = 1 ; tμ = 1

2. Take a size domain      
    [to start in the cap. reg.]

≫ L = ℓμ → L = 230 ℓμ

3. Take a grid resolution  (  20 pts) ≪ ℓμ ≈ → Δ ≈ 0.05 ℓμ

1. Problem non-dimensionalized with viscous scales:

ℓμ =
μl2

ρl σ
~ water: 10 nm / oil: 100 µm

tμ =
μl3

ρl σ2
~ water: 100 ps / oil: 100 µs

Singularity horizon passed through physically with viscosity
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IV - Conical Collapsing Cavities IV.5 - Leaving self-similarity

3
1

3
2
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IV - Conical Collapsing Cavities IV.6 - Flow structure in the regularized region

Pressure max away from the apex in the viscous sim. 

(t̃0 − t̃ ) = 2.10−2
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IV - Conical Collapsing Cavities IV.6 - Flow structure in the regularized region

Pressure max away from the apex in the viscous sim. 

Stagnation flow : 
                             lateral convergence  jet

ũstagn = ũ − ũ0
→ ⇒

(t̃0 − t̃ ) = 2.10−2

(t̃0 − t̃ ) = 2.10−2
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IV - Conical Collapsing Cavities IV.7 - Post-singular jets

Post-singular jets of non-perturbed collapsed cavities 
are CAPILLARO-INERTIAL!

Velocity is more or less constant,  
as observed experimentally 

Pressure field follows again a cap.-inert. Reg. 
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CONCLUSIONS

• Collapse of a conical cavity:  
- time reversal of a recoiling cone 
- self-similar in  (capillary-inertial) 
- dipolar flow  complex far-field tangential velocity discontinuities  
- family of self-similar profiles indexed by  
- self-similar jet profiles at high  
- singularity crossed by viscosity effects  
- stagnation point as a kinematic process for jet emission  
- variation of BCs  inertial pinching  non-universality of self-sim. sol.

t′ 
2/3

→
(θ0, μ̃0)

| μ̃0 |

→ →

Passing through 
the singularity  
with viscosity
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• Dev. of a Self-Similar Solver working on other scale-invariant problems (ONGOING “Huppert’s heap”)

CONCLUSIONS



20

• Dev. of a Self-Similar Solver working on other scale-invariant problems (ONGOING “Huppert’s heap”)

CONCLUSIONS



20

• Dev. of a Self-Similar Solver working on other scale-invariant problems (ONGOING “Huppert’s heap”)

CONCLUSIONS



21

IV - Conical Collapsing Cavities IV.8 - Perturbation of Boundary Conditions

Before: | μ̃0 | = Cst

Now: unsteady dipolar flow

| μ̃0 | = {
50, for t̃ < t̃inv

25, for t̃ ⩾ t̃inv

(Demo version: under resolved here)
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IV - Conical Collapsing Cavities IV.8 - Perturbation of Boundary Conditions

PINCHING!!
New evolution due to different  

self-similar flows depending on  | μ̃0 |

INERTIAL scaling!
Eggers et al. (2007)

3
2

1
2

Burton et al. (2005) 

r

BCs perturbation  
 switch in finite-time singularities⇒

More violent singularity: velocity ∝ t̃′ −1/2

Zeff et al. (2000) 


