

Viscosity as a regularization mechanism for conical cavity collapse like bursting bubbles

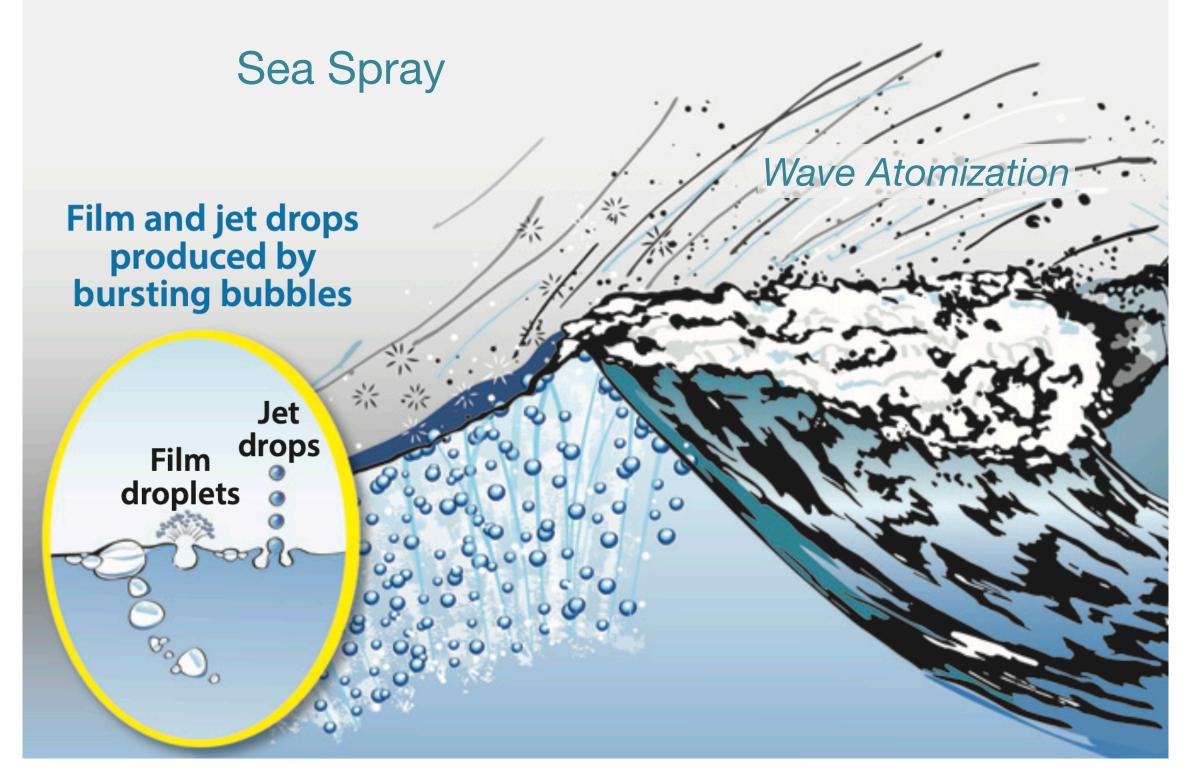
N. CAILLER[†], R. WUNENBURGER[†] & A. ANTKOWIAK[†]

[†]Institut Jean Le Rond ∂'Alembert, CNRS UMR 7190, Sorbonne Université, Paris 75005, France

BASILISK (GERRIS) USERS' MEETING

7-9th July 2025

Mass transfers at the ocean-atmosphere interface



Veron, F. (2015). Ocean Spray. Annu. Rev. Fluid Mech. 642 147-157.

1. Wave breaking: entrapped air pockets **3. Jets:** droplets \leq 1 µm propelled

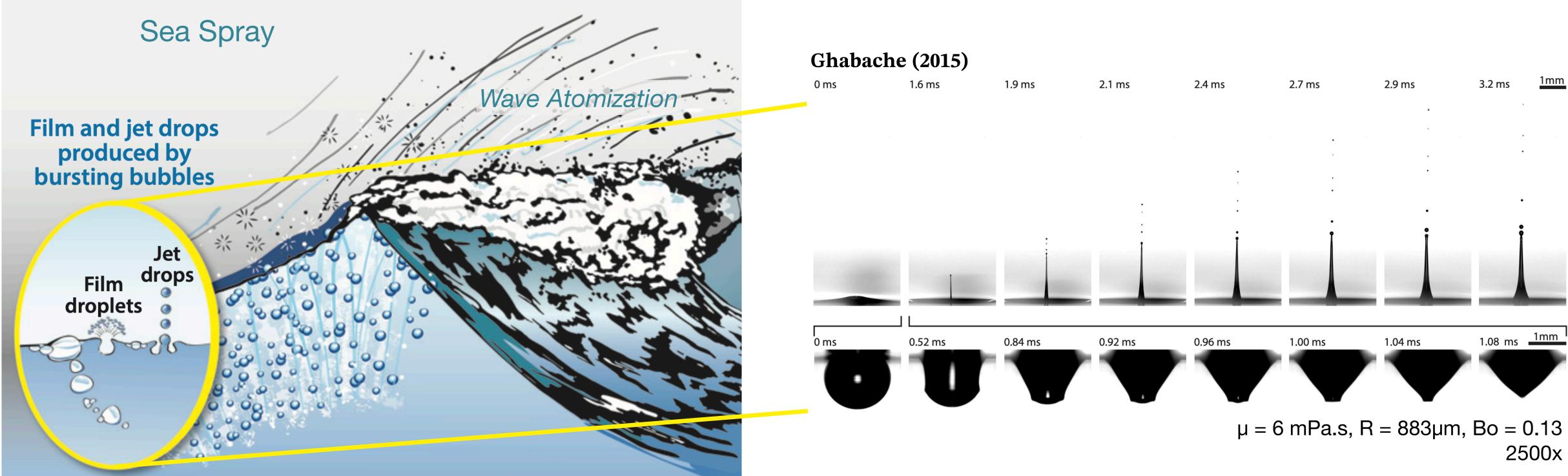
 \rightarrow large amount of bubbles rising

2. Conical Collapse

4. Aerosols + Atomization:

heat and mass transfers between ocean/atmosphere

Mass transfers at the ocean-atmosphere interface



Veron, F. (2015). Ocean Spray. Annu. Rev. Fluid Mech. 642 147-157.

1. Wave breaking: entrapped air pockets **3. Jets:** droplets $\leq 1 \mu m$ propelled

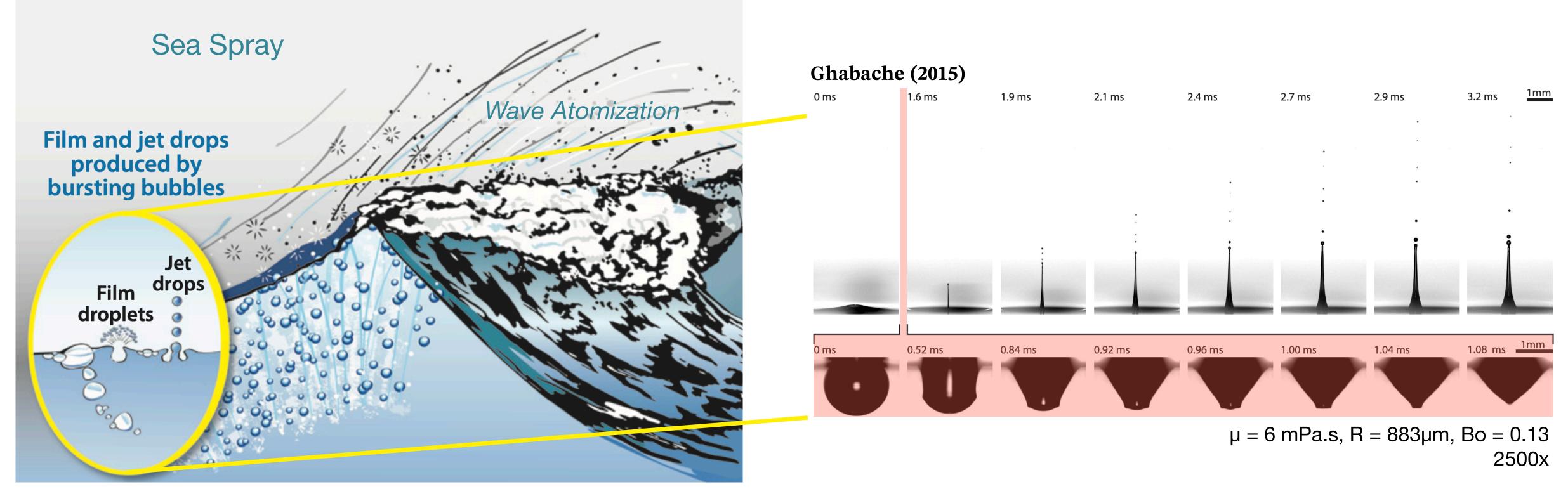
 \rightarrow large amount of bubbles rising

2. Conical Collapse

4. Aerosols + Atomization:

heat and mass transfers between ocean/atmosphere

Mass transfers at the ocean-atmosphere interface



Veron, F. (2015). Ocean Spray. Annu. Rev. Fluid Mech. 642 147-157.

1. Wave breaking: entrapped air pockets **3. Jets:** droplets $\leq 1 \mu m$ propelled

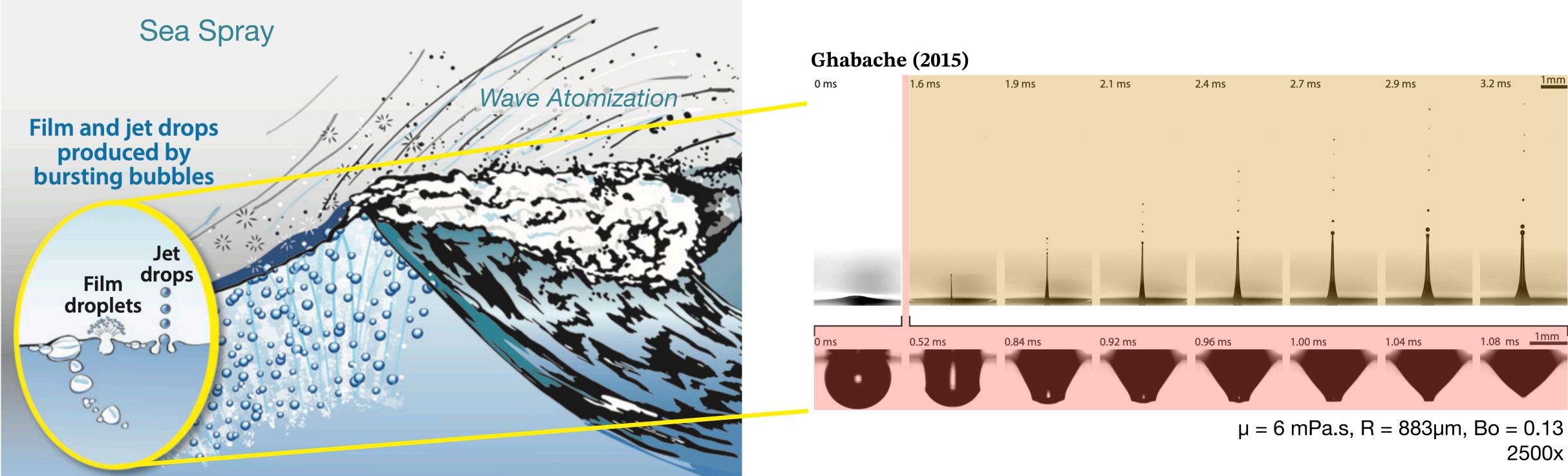
 \rightarrow large amount of bubbles rising

2. Conical Collapse

4. Aerosols + Atomization:

heat and mass transfers between ocean/atmosphere

Mass transfers at the ocean-atmosphere interface



Veron, F. (2015). Ocean Spray. Annu. Rev. Fluid Mech. 642 147-157.

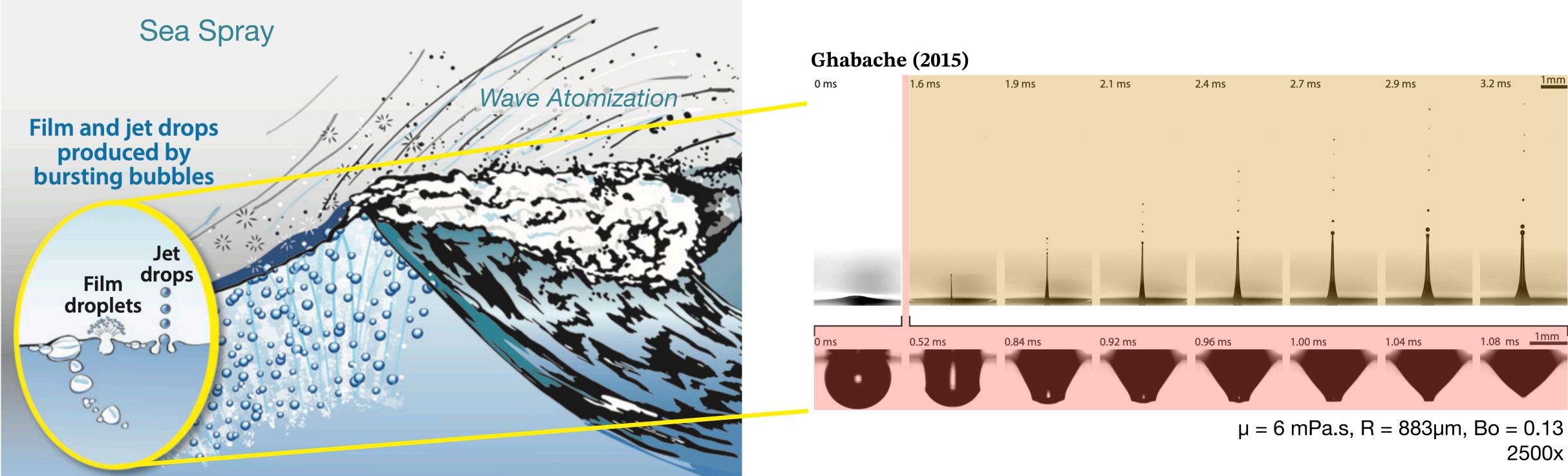
1. Wave breaking: entrapped air pockets **3. Jets:** droplets $\leq 1 \mu m$ propelled

 \rightarrow large amount of bubbles rising

2. Conical Collapse

4. Aerosols + Atomization: heat and mass transfers between ocean/atmosphere

Mass transfers at the ocean-atmosphere interface



Veron, F. (2015). Ocean Spray. Annu. Rev. Fluid Mech. 642 147-157.

1. Wave breaking: entrapped air pockets **3. Jets:** droplets $\leq 1 \mu m$ propelled

 \rightarrow large amount of bubbles rising

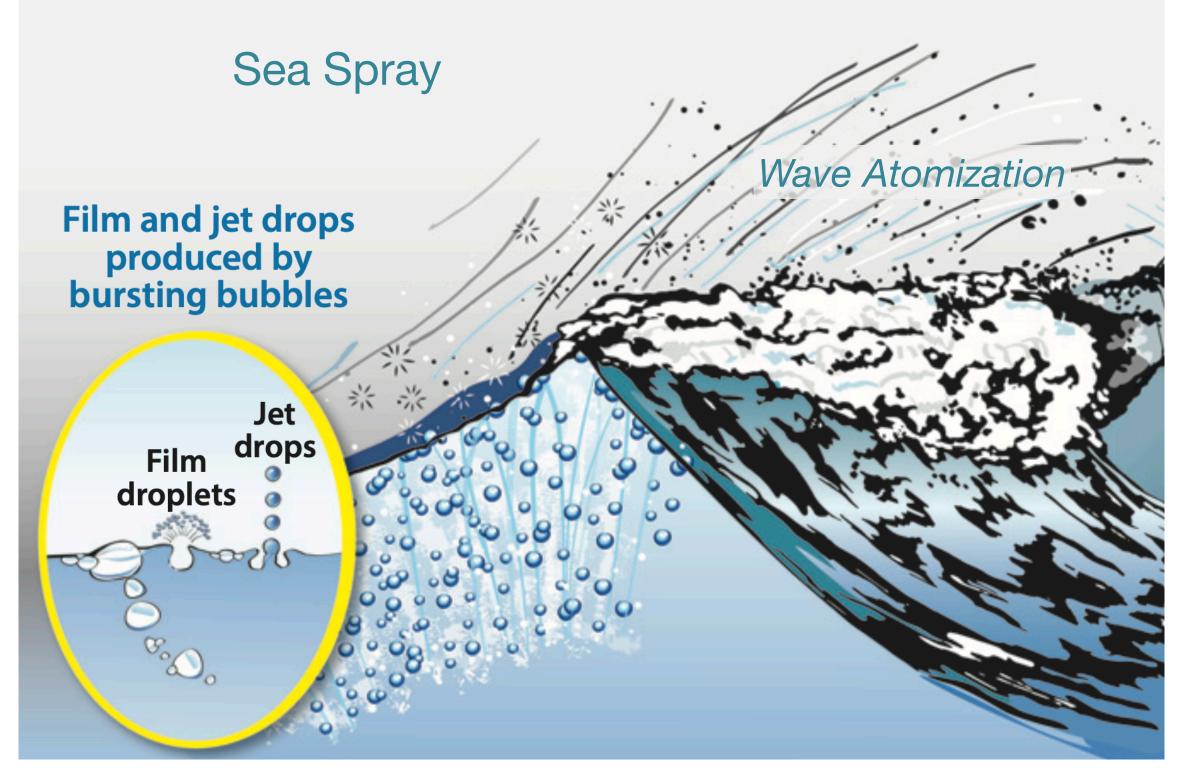
2. Conical Collapse

4. Aerosols + Atomization: heat and mass transfers between ocean/atmosphere

1 - How jets of bubble bursting are emitted?

Theoretical & numerical descriptions of the hydrodynamics?

Mass transfers at the ocean-atmosphere interface



Veron, F. (2015). Ocean Spray. Annu. Rev. Fluid Mech. 642 147-157.

1 - How jets of bubble bursting are emitted?

Conical Collapse

 $\mu = 6$ mPa.s, R = 883µm, Bo = 0.13, 2500x

Ghabache (2015)

Mass transfers at the ocean-atmosphere interface

Veron, F. (2015). Ocean Spray. Annu. Rev. Fluid Mech. 642 147-157.

1 - How jets of bubble bursting are emitted?

Conical Collapse

Mass transfers at the ocean-atmosphere interface

Veron, F. (2015). Ocean Spray. Annu. Rev. Fluid Mech. 642 147-157.

1 - How jets of bubble bursting are emitted?

Conical Collapse

Mass transfers at the ocean-atmosphere interface

Veron, F. (2015). Ocean Spray. Annu. Rev. Fluid Mech. 642 147-157.

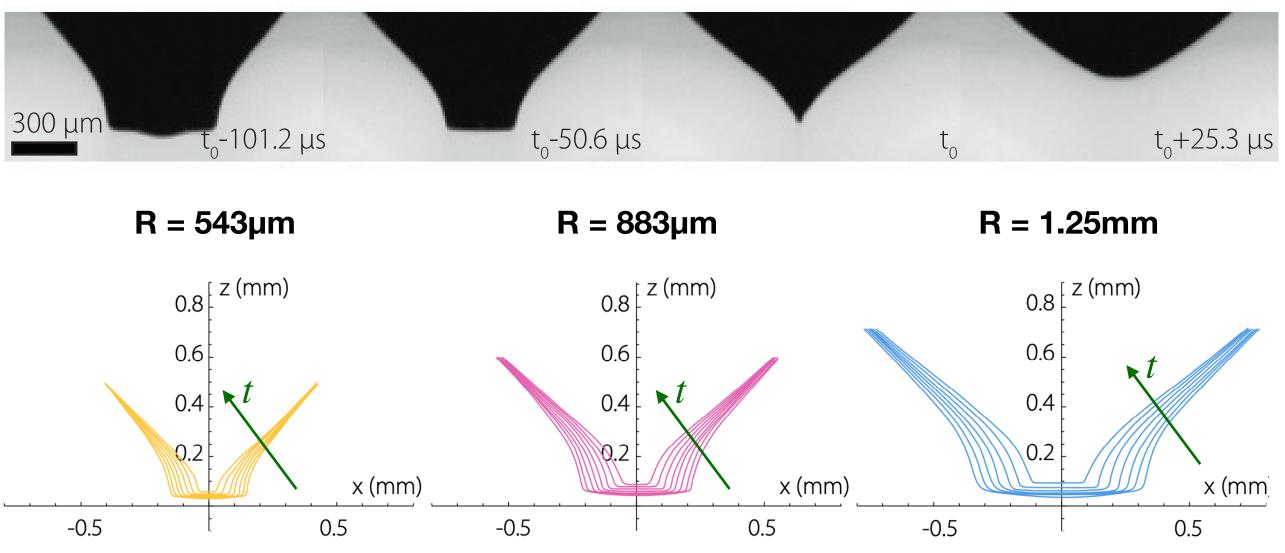
1 - How jets of bubble bursting are emitted?

Conical Collapse

Finite-time singularity

 $t_0 \rightarrow$ time of singularity

Ghabache (2015)

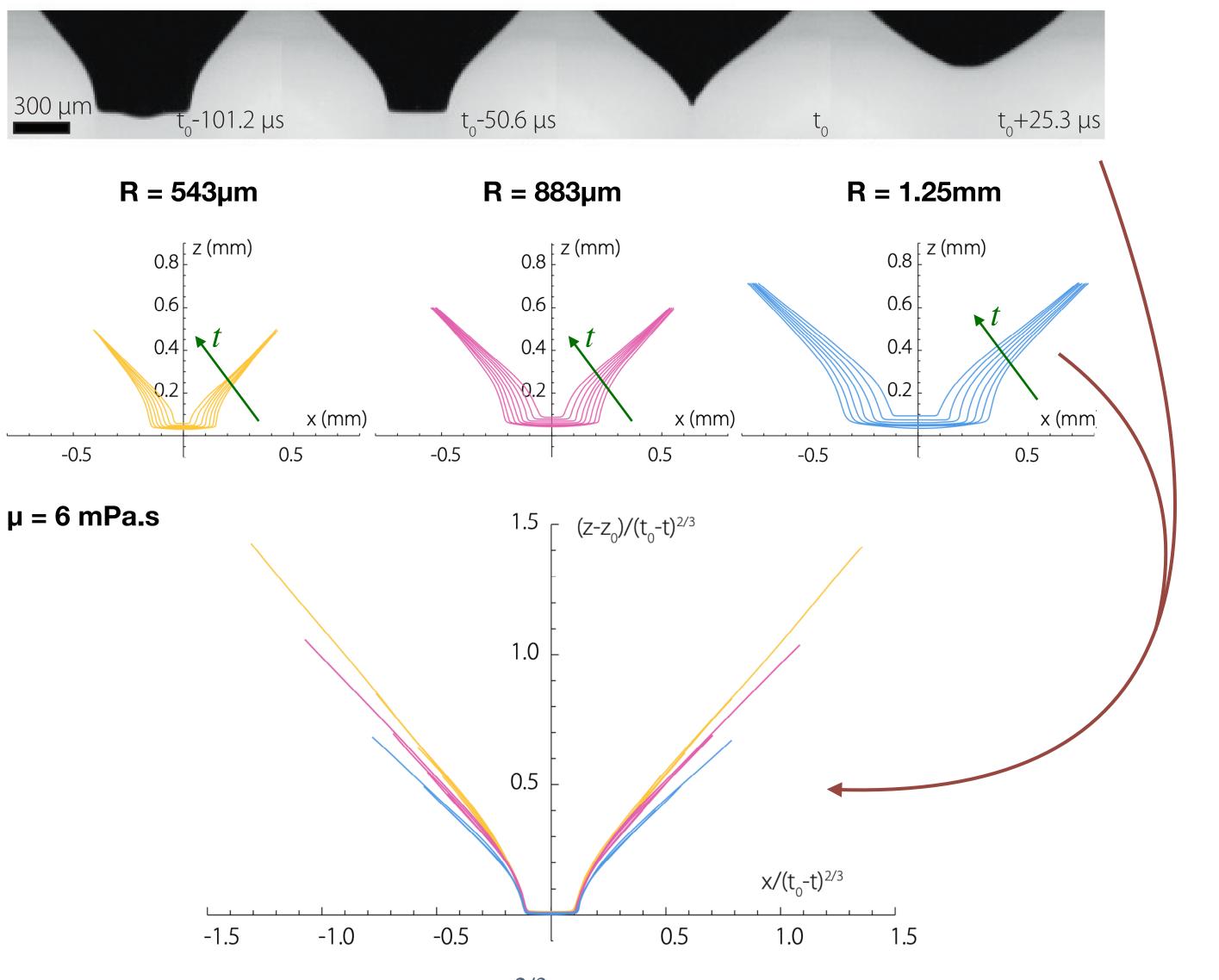


µ = 6 mPa.s

1 - How jets of bubble bursting are emitted?

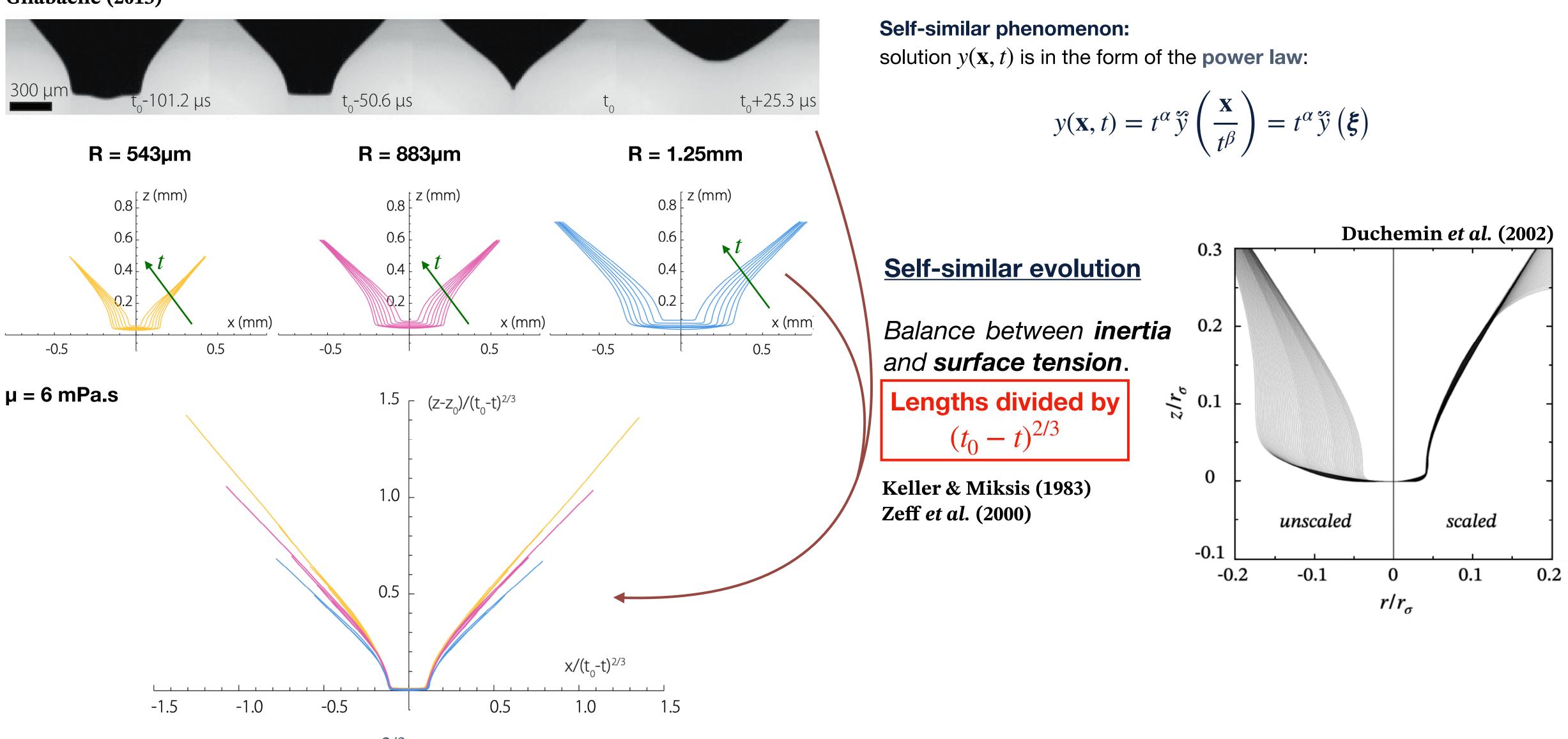
4

Ghabache (2015)



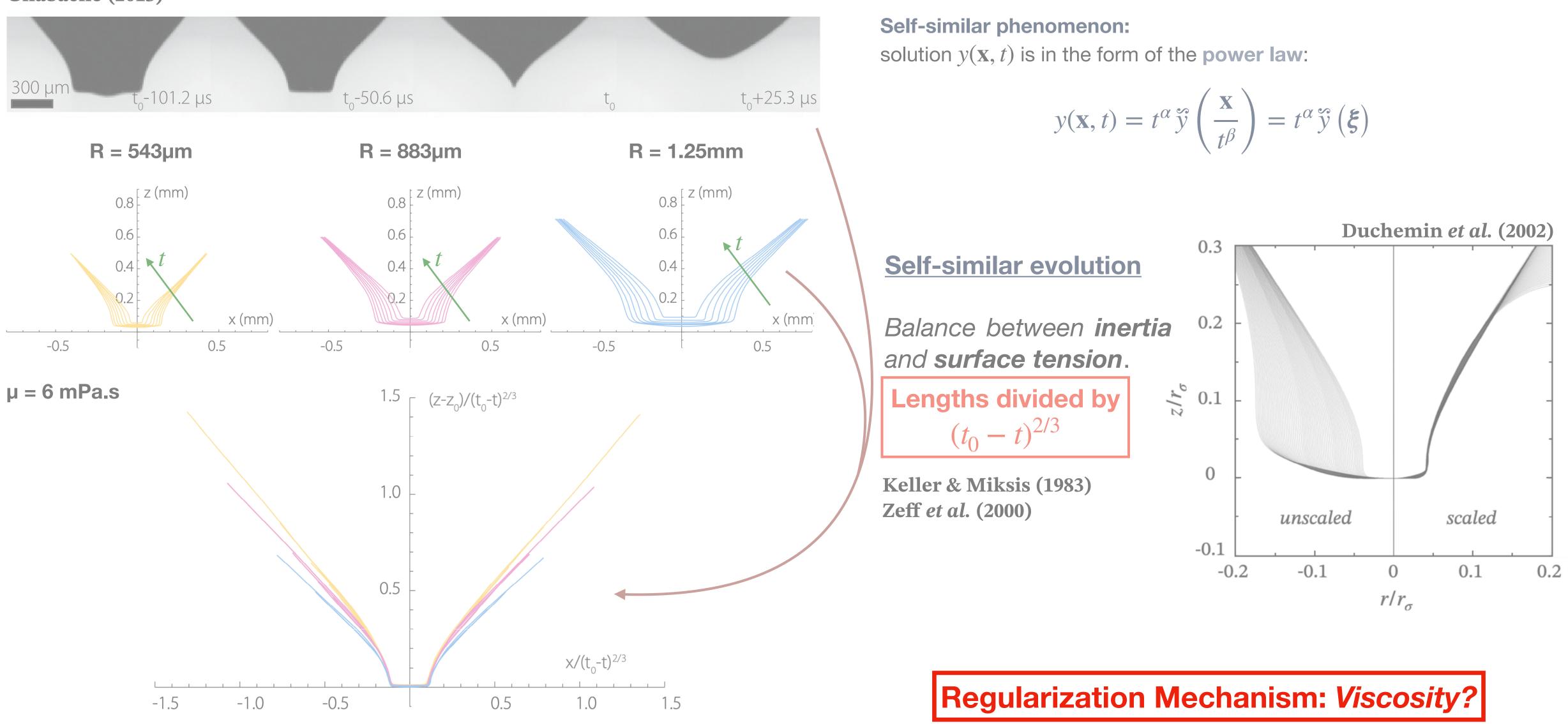
Rescaling by $\boldsymbol{\xi} = \mathbf{x} (t_0 - t)^{-2/3}$ shows that these time-dependent profiles correspond to *a single one*: the problem becomes *steady!* 4

Ghabache (2015)

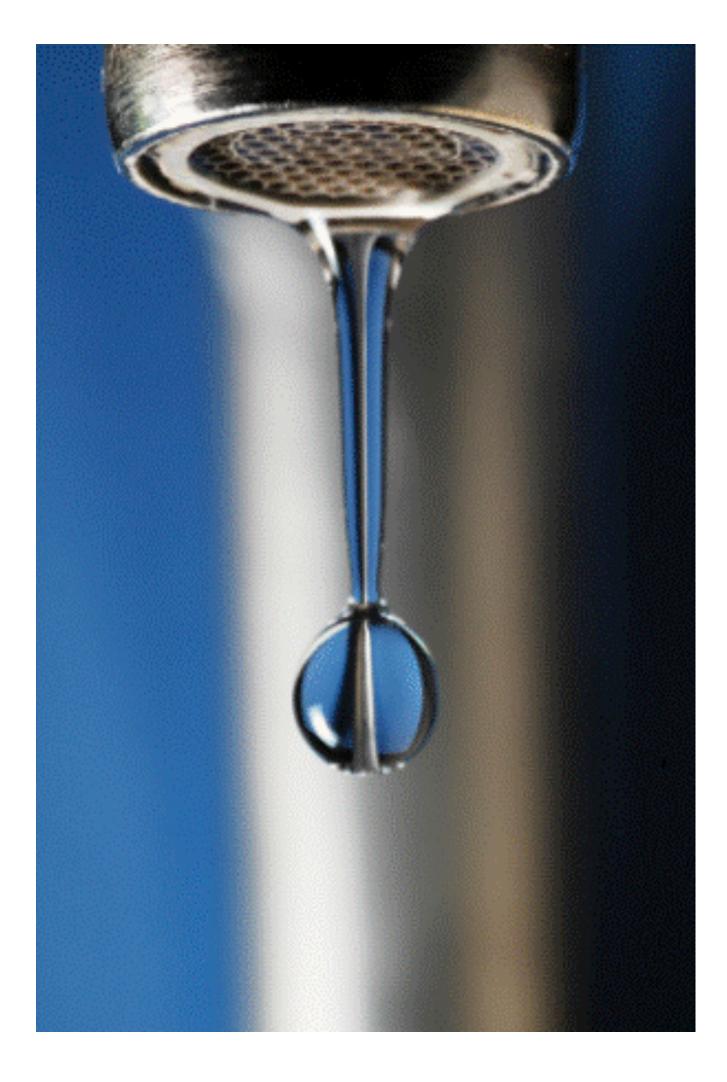


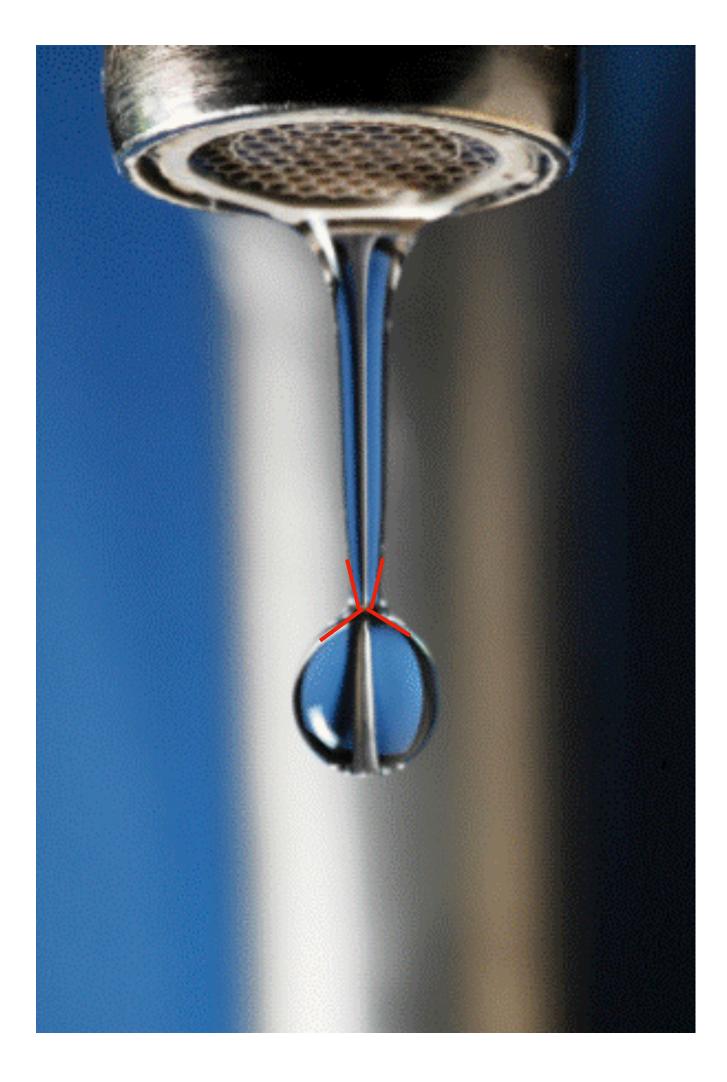
Rescaling by $\boldsymbol{\xi} = \mathbf{x} (t_0 - t)^{-2/3}$ shows that these time-dependent profiles correspond to *a single one*: the problem becomes *steady!* ₄

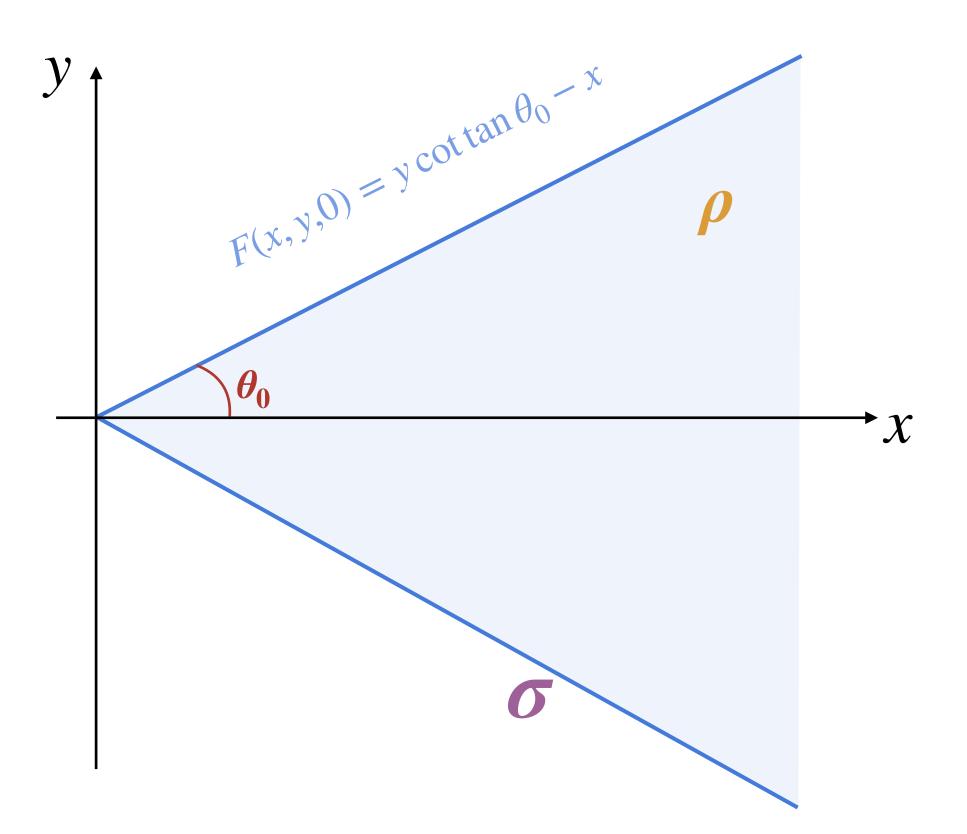
Ghabache (2015)



Rescaling by $\boldsymbol{\xi} = \mathbf{x} (t_0 - t)^{-2/3}$ shows that these time-dependent profiles correspond to *a single one*: the problem becomes *steady!* 4

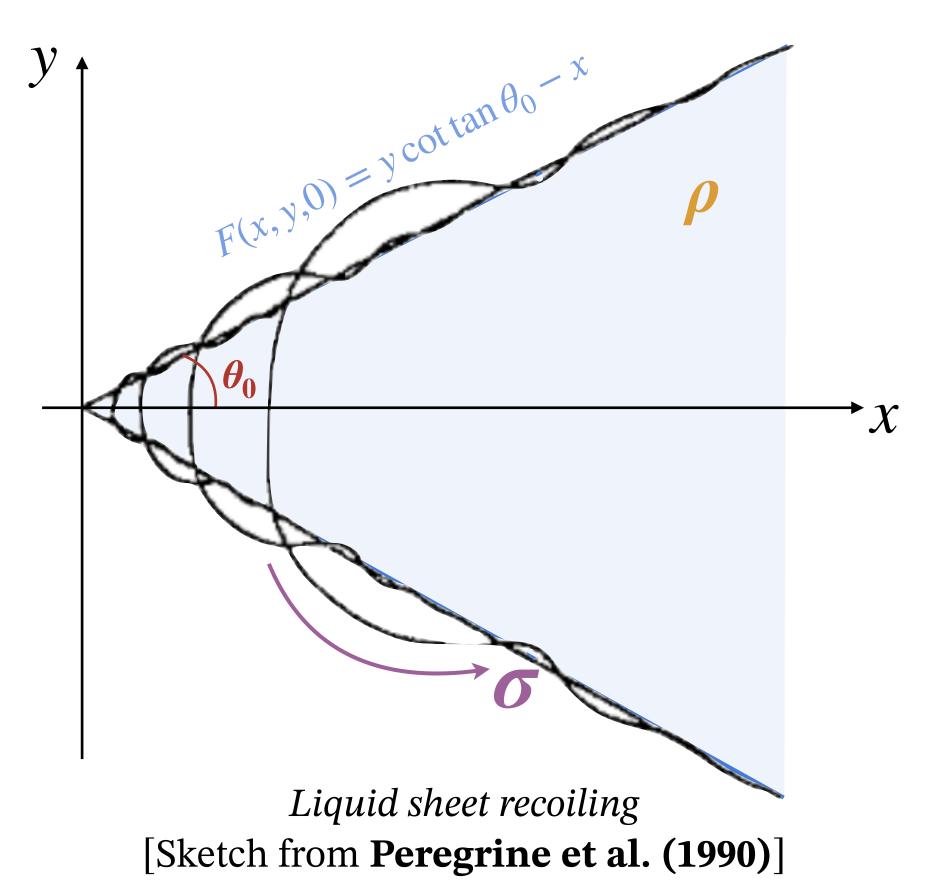






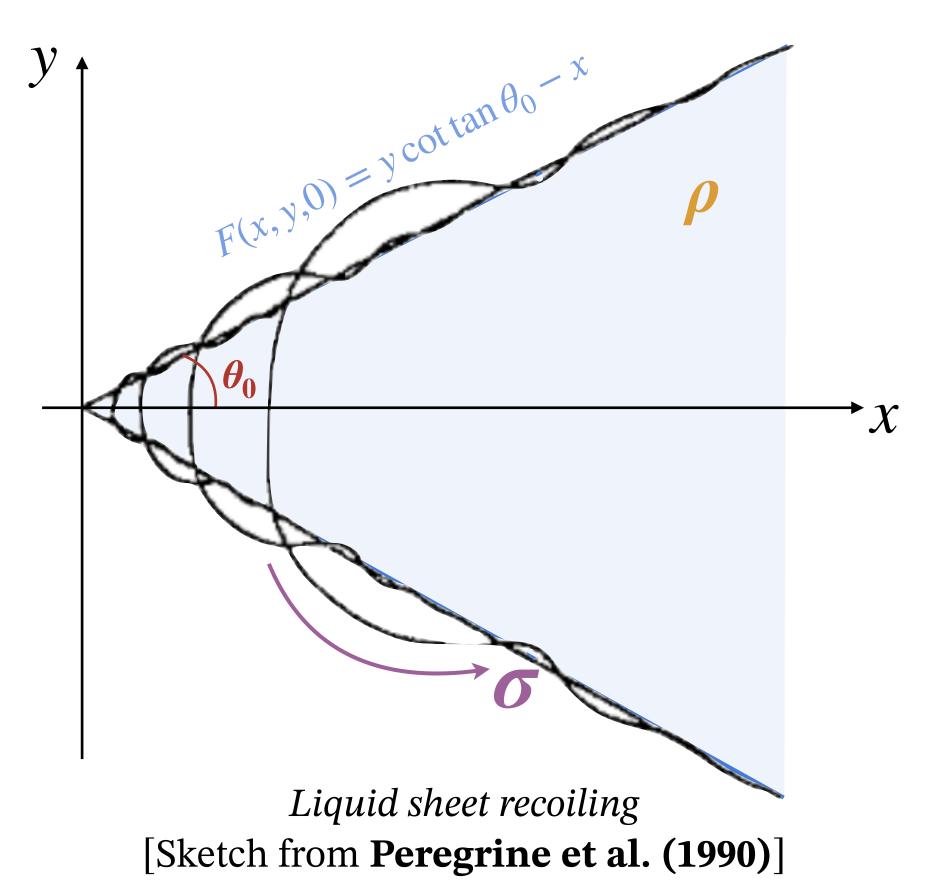
Hypotheses on the flow: inviscid, irrotational, isochoric

Recoil near the vertex of the wedge under surface tension effects.



Hypotheses on the flow: inviscid, irrotational, isochoric

Recoil near the vertex of the wedge under surface tension effects.



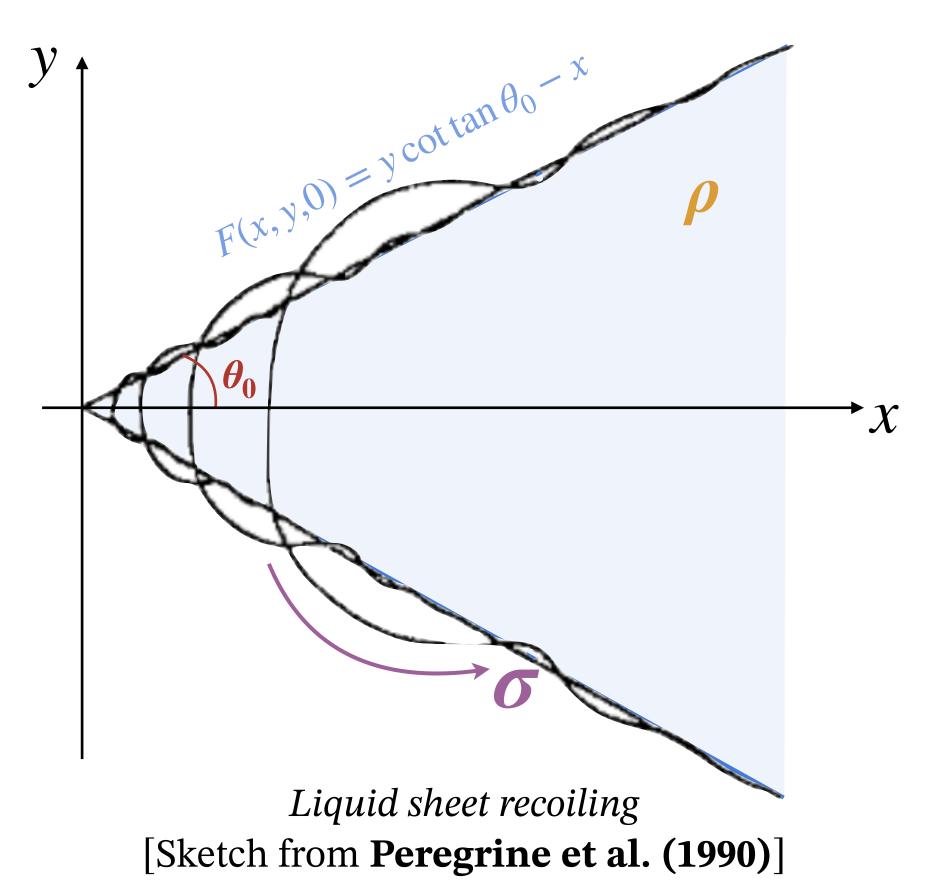
Hypotheses on the flow: inviscid, irrotational, isochoric

From dimensional analysis:

$$\xi = \left(\frac{\rho}{\sigma t^2}\right)^{1/3} x \quad , \quad \eta = \left(\frac{\rho}{\sigma t^2}\right)^{1/3} y$$

are the self-similar variables.

Recoil near the vertex of the wedge under surface tension effects.



Hypotheses on the flow: inviscid, irrotational, isochoric

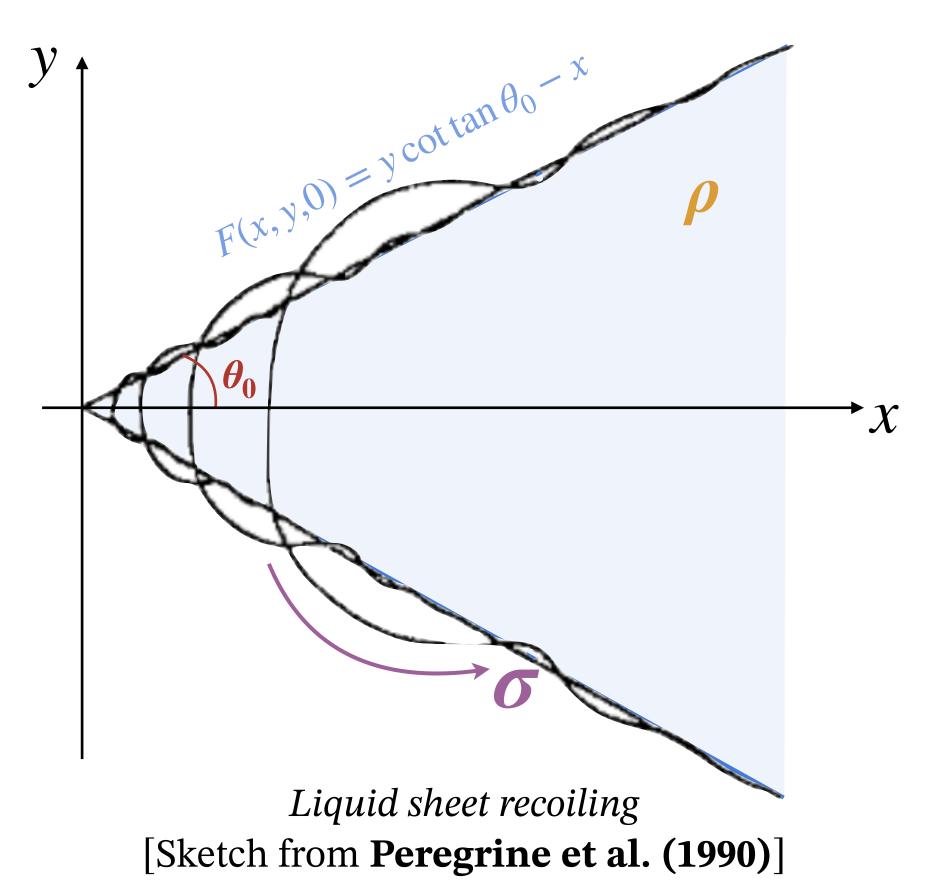
From dimensional analysis:

$$\xi = \left(\frac{\rho}{\sigma t^2}\right)^{1/3} x \quad , \quad \eta = \left(\frac{\rho}{\sigma t^2}\right)^{1/3} y$$

are the self-similar variables.

• Lengths $\propto t^{2/3}$

Recoil near the vertex of the wedge under surface tension effects.



Hypotheses on the flow: inviscid, irrotational, isochoric

From dimensional analysis:

$$\xi = \left(\frac{\rho}{\sigma t^2}\right)^{1/3} x \quad , \quad \eta = \left(\frac{\rho}{\sigma t^2}\right)^{1/3} y$$

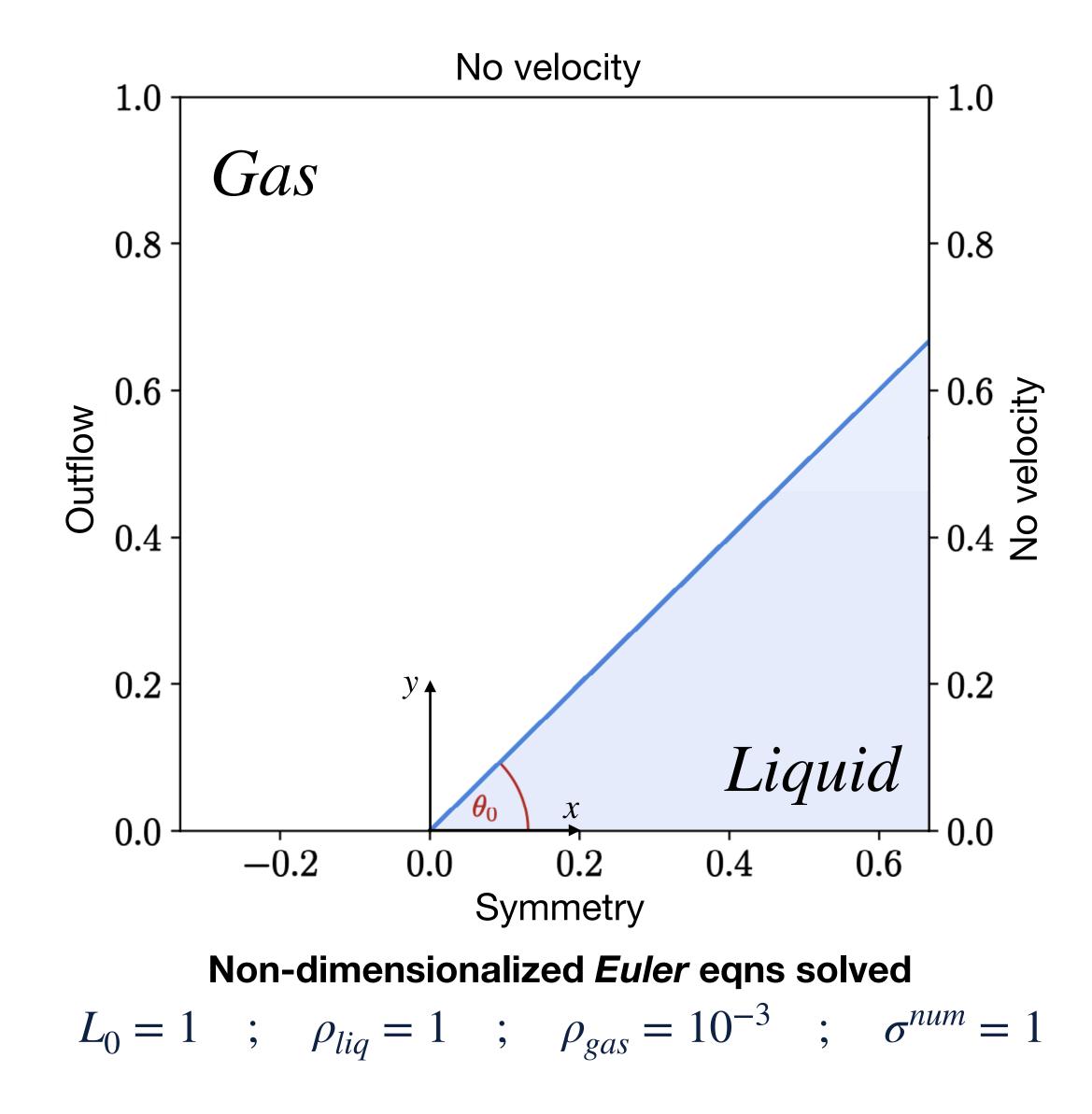
are the self-similar variables.

• Lengths $\propto t^{2/3}$

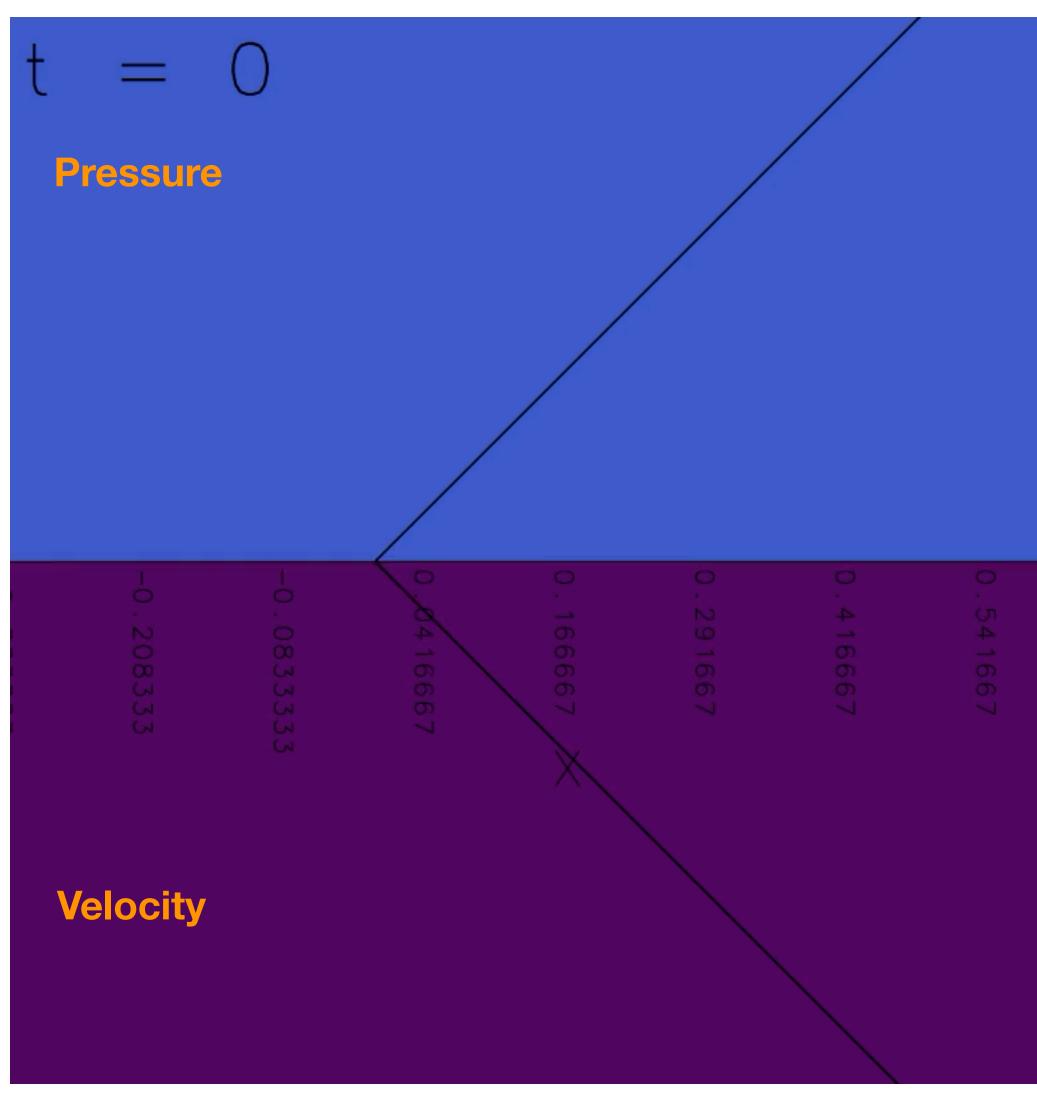
• Velocity $\propto t^{-1/3} \xrightarrow[t \to 0]{} + \infty \Rightarrow$ Finite-time singularity

Flow self-similar at all times.

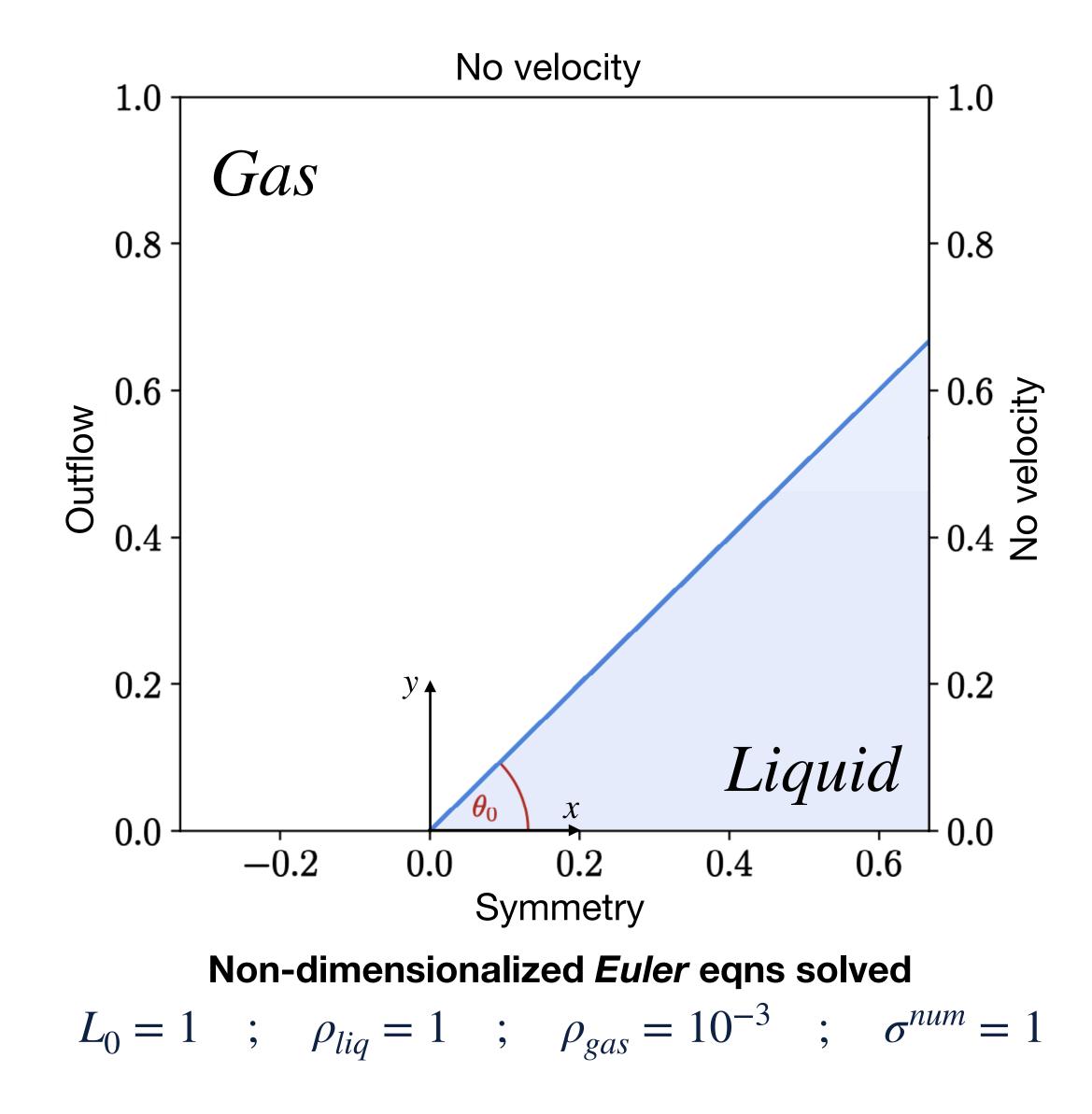
Initial Configuration & Boundary Conditions



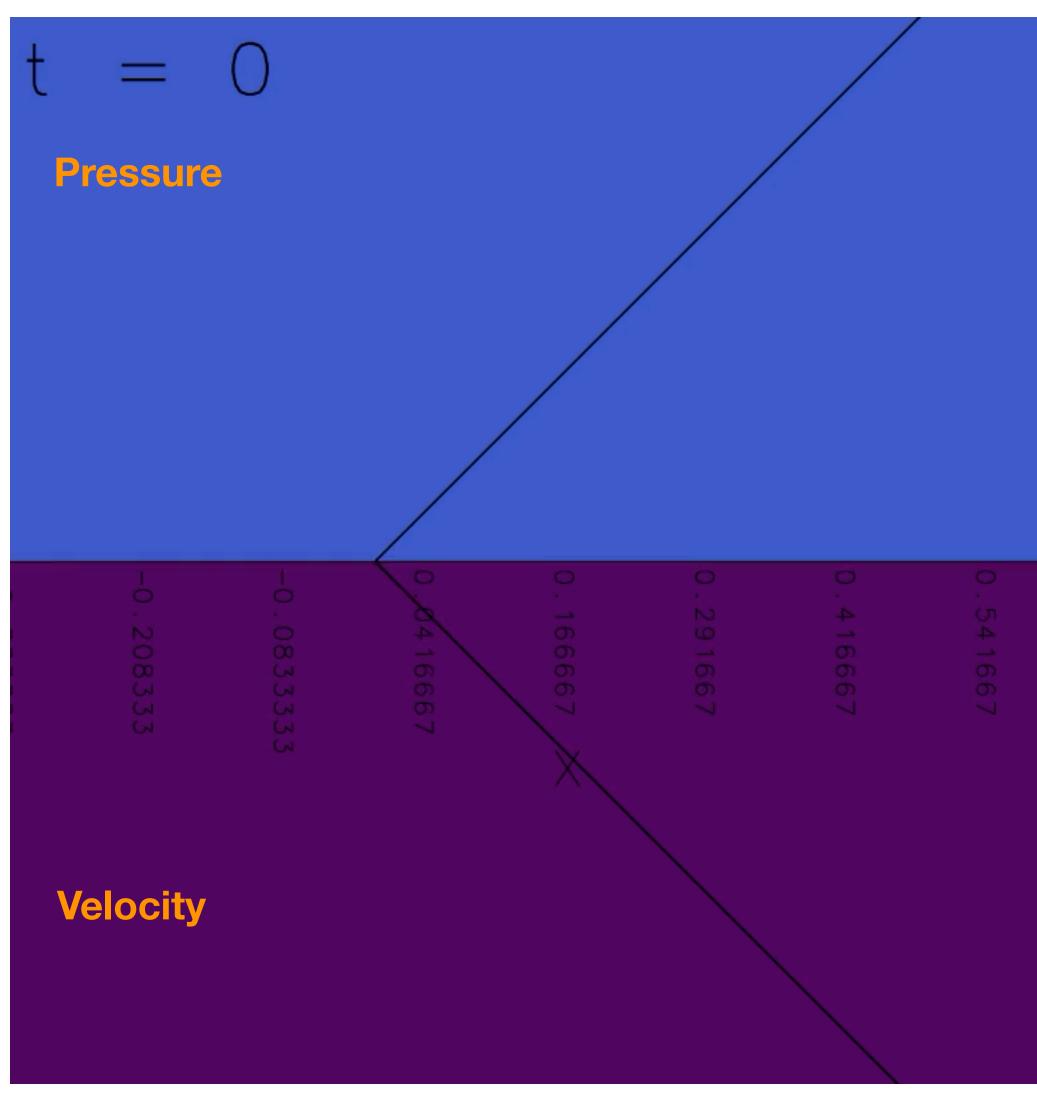
II.2 - Numerical Modelling

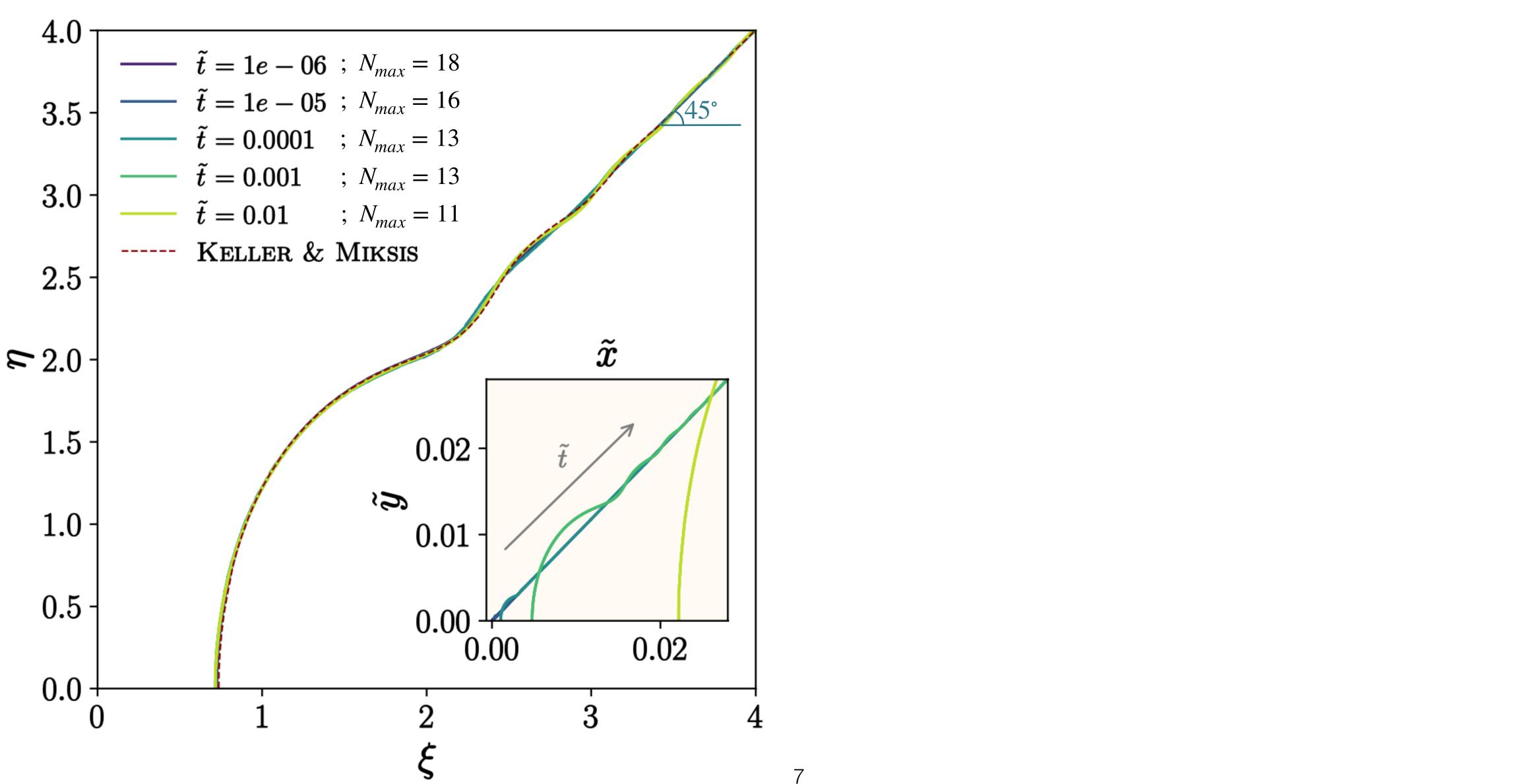


Initial Configuration & Boundary Conditions

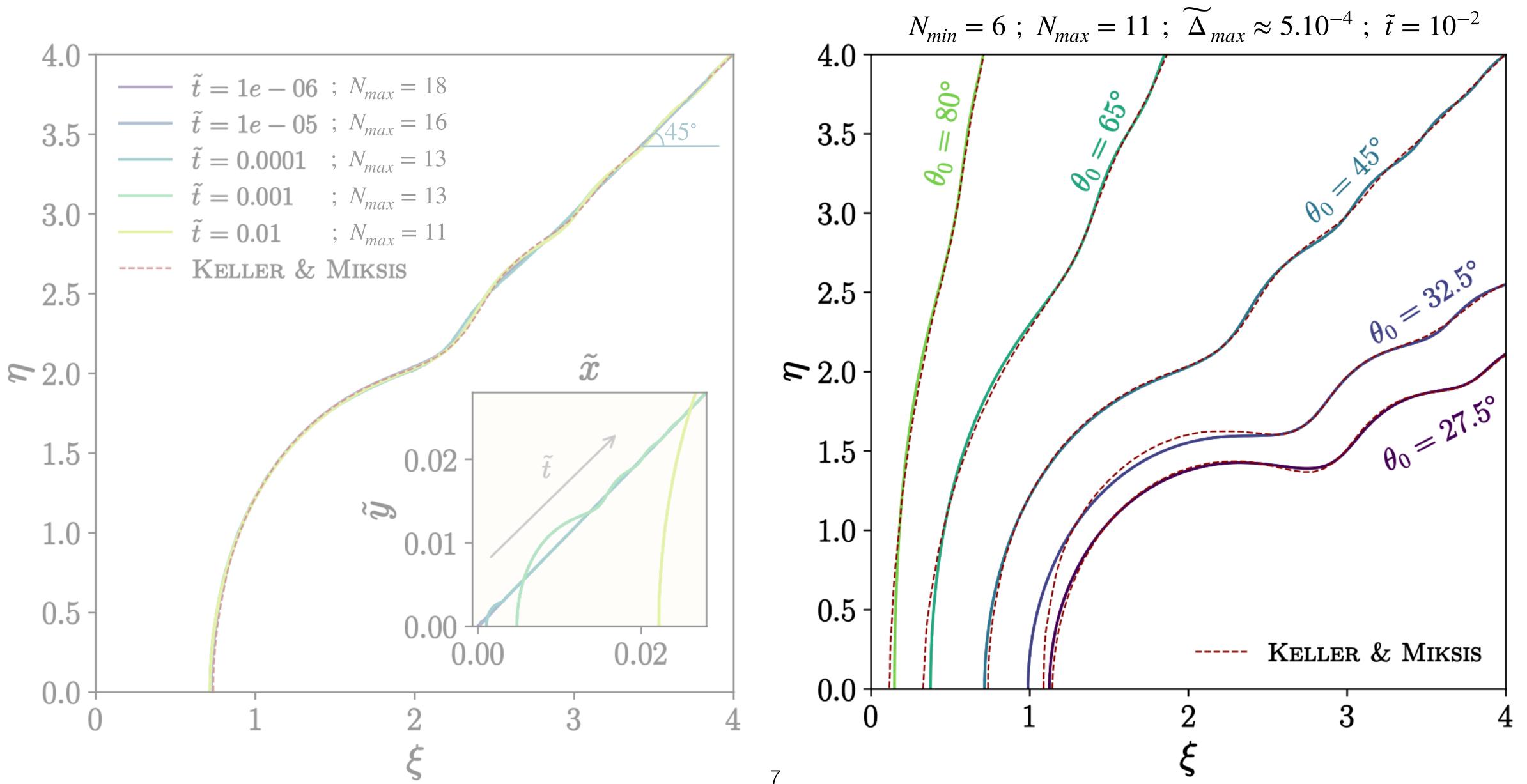


II.2 - Numerical Modelling



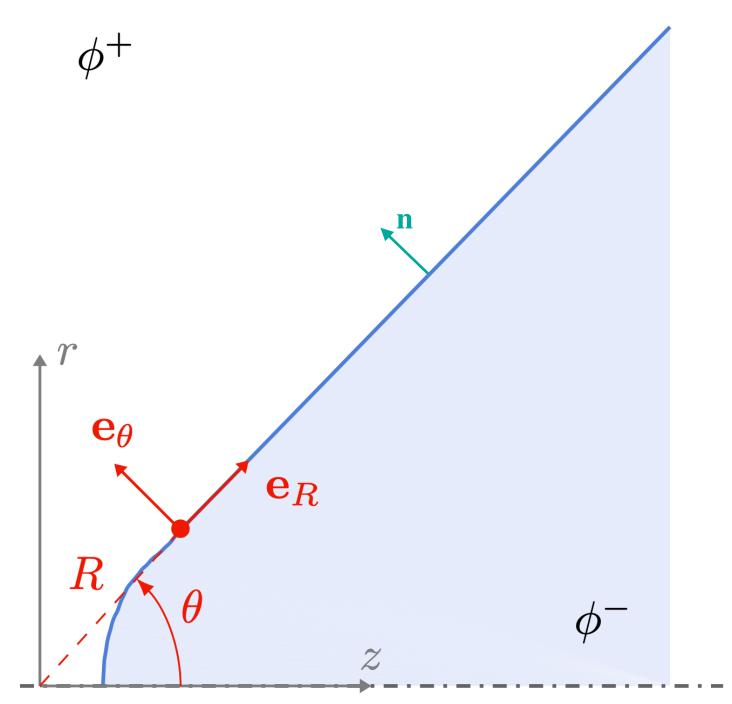


II.3 - Numerical Results



II.3 - Numerical Results

<u>Sierou & Lister (2004)</u>: axisymmetric recoil of an inviscid liquid cone \rightarrow theoretical + numerical study (BIM)



New features in AXI (cone):

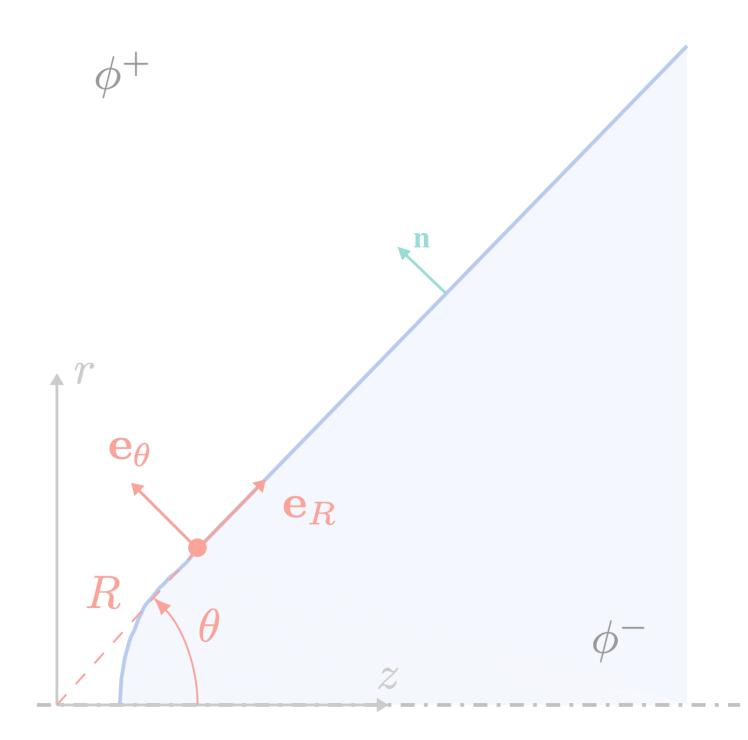
 $R = \sqrt{r^2 + z^2}$; $\tan \theta = r/z$ $\mathcal{S}(R,\theta,t) := \theta - F(R,t)$ $\mathbf{n} = \nabla \mathcal{S} / \| \nabla \mathcal{S} \|$

• *inhomogeneous curvature* \Rightarrow *Laplace pressure gradient* \Rightarrow *capillary flow (general movement)*;

• geometrical spreading \Rightarrow capillary waves of smaller amplitude $(\sim R^{-5})$ than in 2D $(\sim R^{-7/2})$;

Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

<u>Sierou & Lister (2004)</u>: axisymmetric recoil of an inviscid liquid cone \rightarrow theoretical + numerical study (BIM)



New features in AXI (cone):

<u>A far-field dipolar distribution flow μ_d is added upon the capillary flow:</u>

• **K&M:** waves ↔ surface vorticity distribution → tangential velocity discontinuities in inviscid flows

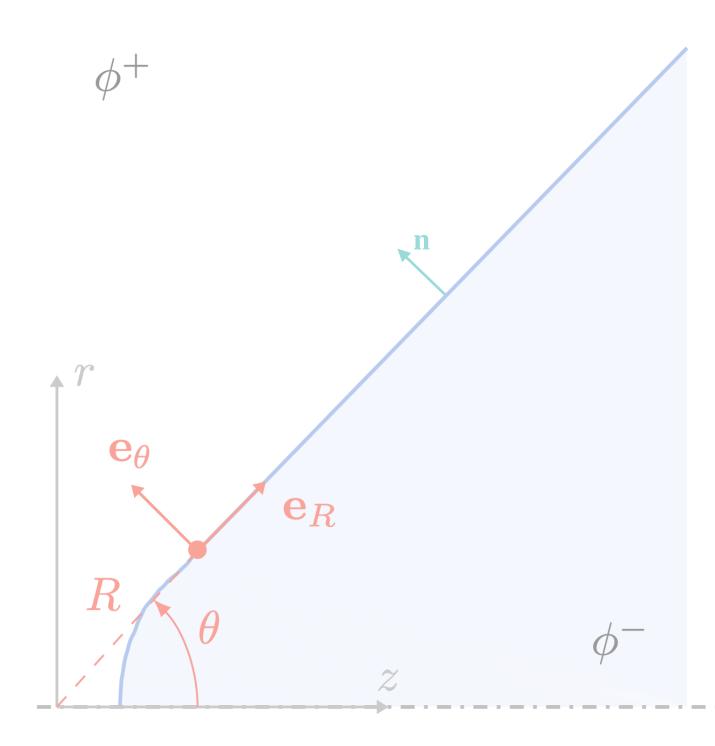
 $R = \sqrt{r^2 + z^2}$; $\tan \theta = r/z$ $\mathcal{S}(R,\theta,t) := \theta - F(R,t)$ $\mathbf{n} = \nabla \mathcal{S} / \| \nabla \mathcal{S} \|$

• inhomogeneous curvature \Rightarrow Laplace pressure gradient \Rightarrow capillary flow (general movement);

• *geometrical spreading* \Rightarrow capillary waves of *smaller amplitude* $(\sim R^{-5})$ than in 2D $(\sim R^{-7/2})$;

Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

<u>Sierou & Lister (2004)</u>: axisymmetric recoil of an inviscid liquid cone \rightarrow theoretical + numerical study (BIM)



New features in AXI (cone):

<u>A far-field dipolar distribution flow μ_d is added upon the capillary flow:</u>

• **K&M:** waves \leftrightarrow surface vorticity distribution

• S&L: add a variable surface vorticity distribution at far-field \rightarrow modelling complex flows

 $R = \sqrt{r^2 + z^2}$; $\tan \theta = r/z$ $\mathcal{S}(R,\theta,t) := \theta - F(R,t)$ $\mathbf{n} = \nabla \mathcal{S} / \| \nabla \mathcal{S} \|$

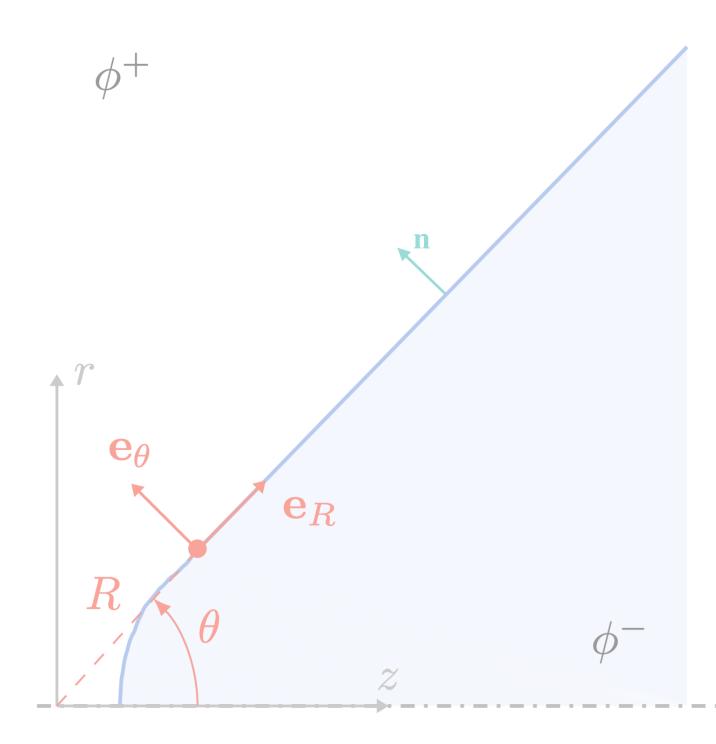
• inhomogeneous curvature \Rightarrow Laplace pressure gradient \Rightarrow capillary flow (general movement);

• *geometrical spreading* \Rightarrow capillary waves of *smaller amplitude* $(\sim R^{-5})$ than in 2D $(\sim R^{-7/2})$;

→ tangential velocity discontinuities in inviscid flows \mathbf{V}

Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

<u>Sierou & Lister (2004)</u>: axisymmetric recoil of an inviscid liquid cone \rightarrow theoretical + numerical study (BIM)



New features in AXI (cone):

<u>A far-field dipolar distribution flow μ_d is added upon the capillary flow:</u>

• S&L: add a variable surface vorticity distribution at far-field \rightarrow modelling complex flows \downarrow

 $R = \sqrt{r^2 + z^2}$; $\tan \theta = r/z$ $\mathcal{S}(R,\theta,t) := \theta - F(R,t)$ $\mathbf{n} = \nabla \mathcal{S} / \| \nabla \mathcal{S} \|$

• Vorticity sheet \rightarrow modelization \rightarrow dipolar flow μ_d (potential theory) Nie & Baker (1998)

Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

• *inhomogeneous curvature* \Rightarrow *Laplace pressure gradient* \Rightarrow *capillary flow (general movement);*

• *geometrical spreading* \Rightarrow capillary waves of *smaller amplitude* $(\sim R^{-5})$ than in 2D $(\sim R^{-7/2})$;

• **K&M:** waves ↔ surface vorticity distribution → tangential velocity discontinuities in inviscid flows \mathbf{V}

At dominant order $(R \rightarrow +\infty)$: capillary flow \ll dipolar flow

 $F(R,t) = \theta_0$

$$\mu_d(R,t) = \sqrt{\frac{\sigma}{\rho}} \,\widetilde{\mu}_0 \, R^{1/2}$$

 $\phi^{-}(R, \theta, t) = A_0^{-} P_{1/2}(\cos \theta) R^{1/2}$

$$\phi^+(R,\theta,t) = \left(A_{0,P}^+ P_{1/2}\cos(\theta) + A_{0,Q}^+ Q_{1/2}\cos(\theta)\right) R^{1/2}$$

At dominant order $(R \rightarrow +\infty)$: capillary flow \ll dipolar flow

 $F(R,t) = \theta_0$ \longrightarrow Two <u>free parameters</u>: $\theta_0, \widetilde{\mu}_0$ $\mu_d(R,t) = \sqrt{\frac{\sigma}{\rho}} \widetilde{\mu_0} R^{1/2}$ $\phi^{-}(R, \theta, t) = A_0^{-} P_{1/2}(\cos \theta) R^{1/2}$

 $\phi^+(R,\theta,t) = \left(A_{0,P}^+ P_{1/2}\cos(\theta) + A_{0,Q}^+ Q_{1/2}\cos(\theta)\right) R^{1/2}$

$\widetilde{\mu}_0$ corresponds to the *intensity* of the dipolar flow

Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

At dominant order $(R \rightarrow +\infty)$: capillary flow \ll dipolar flow

 $F(R,t) = \theta_0$ \longrightarrow Two <u>free parameters</u>: $\theta_0, \widetilde{\mu}_0$ $\mu_d(R,t) = \sqrt{\frac{\sigma}{\rho}} \,\widetilde{\mu_0} \, R^{1/2}$ $\phi^{-}(R, \theta, t) = A_0^{-} P_{1/2}(\cos \theta) R^{1/2}$

$$\phi^+(R,\theta,t) = \left(A_{0,P}^+ P_{1/2}\cos(\theta) + A_{0,Q}^+ Q_{1/2}\cos(\theta)\right) R^{1/2}$$

Unknown coefficients to be determined.

$\widetilde{\mu}_0$ corresponds to the *intensity* of the dipolar flow

At dominant order $(R \rightarrow +\infty)$: capillary flow \ll dipolar flow

 $F(R,t) = \theta_0$ \longrightarrow Two <u>free parameters</u>: $\theta_0, \widetilde{\mu}_0$ $\mu_d(R,t) = \sqrt{\frac{\sigma}{\rho}} \,\widetilde{\mu_0} \, R^{1/2}$ $\phi^{-}(R, \theta, t) = A_0^{-} P_{1/2}(\cos \theta) R^{1/2}$

$$\phi^+(R,\theta,t) = \left(A_{0,P}^+ P_{1/2}\cos(\theta) + A_{0,Q}^+ Q_{1/2}\cos(\theta)\right) R^{1/2}$$

Unknown coefficients to be determined.

We can show analytically that: $A_{0,P}^+ = 0$; $A_0^-, A_{0,O}^+ \propto f^{\pm}(\theta_0) \widetilde{\mu}_0$

 $\widetilde{\mu}_0$ corresponds to the *intensity* of the dipolar flow

Far-field velocity depends on $\widetilde{\mu}_0$

Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

III - 3D-AXI Recoil under a dipolar flow

At dominant order $(R \rightarrow +\infty)$: capillary flow \ll dipolar flow

 $F(R,t) = \theta_0$ Two free parameters: $\theta_0, \ \widetilde{\mu}_0$ $\mu_d(R,t) = \sqrt{\frac{\sigma}{\rho}} \,\widetilde{\mu_0} \, R^{1/2}$ $\phi^{-}(R, \theta, t) = A_0^{-} P_{1/2}(\cos \theta) R^{1/2}$

$$\phi^+(R,\theta,t) = \left(A_{0,P}^+ P_{1/2}\cos(\theta) + A_{0,Q}^+ Q_{1/2}\cos(\theta)\right) R^{1/2}$$

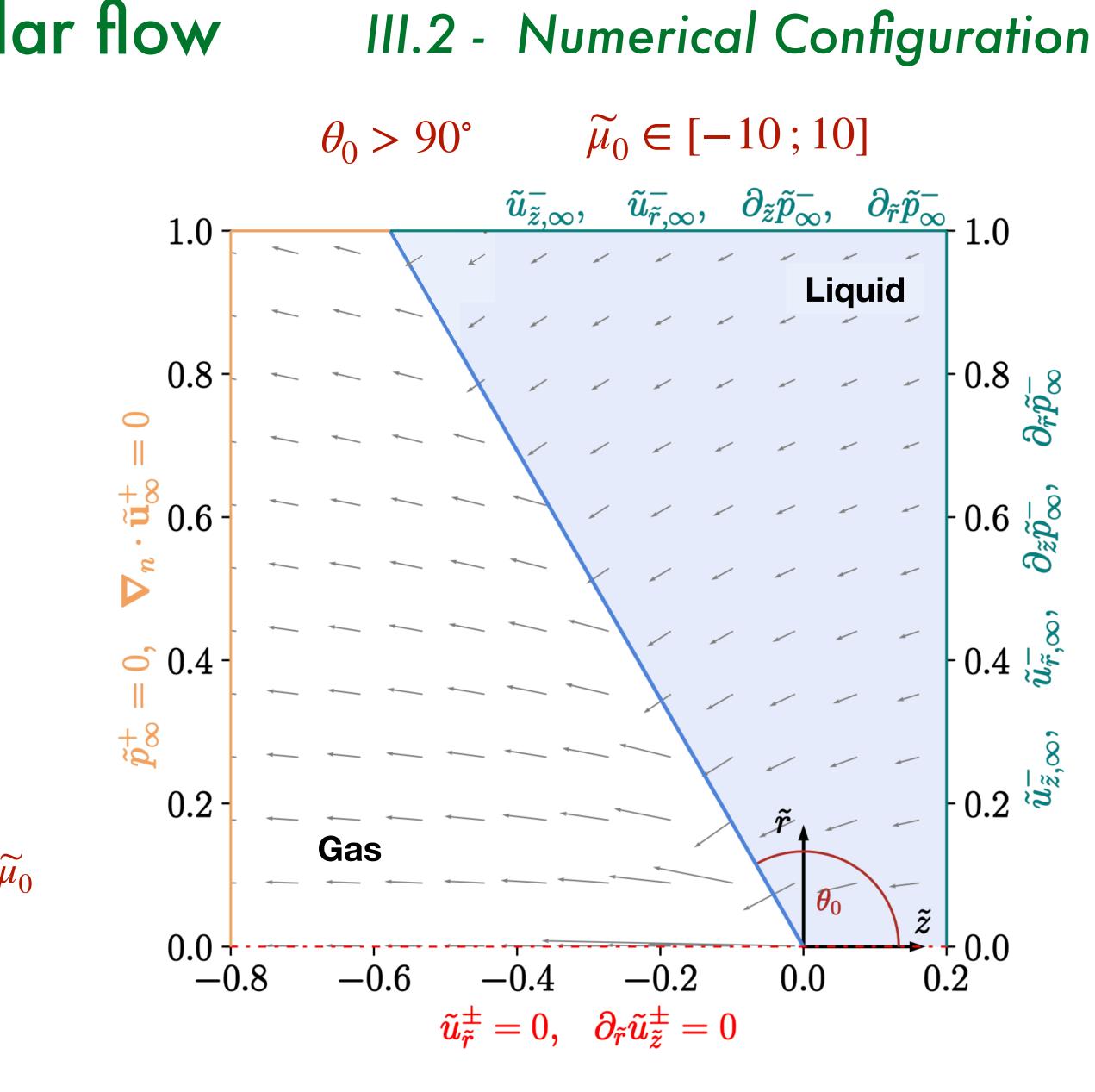
Unknown coefficients to be determined.

We can show analytically that: $A_{0,P}^+ = 0$; $A_0^-, A_{0,Q}^+ \propto f^{\pm}(\theta_0) \widetilde{\mu}_0$

 $\widetilde{\mu}_0$ corresponds to the *intensity* of the dipolar flow

Far-field velocity depends on $\widetilde{\mu}_0$

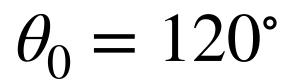
Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

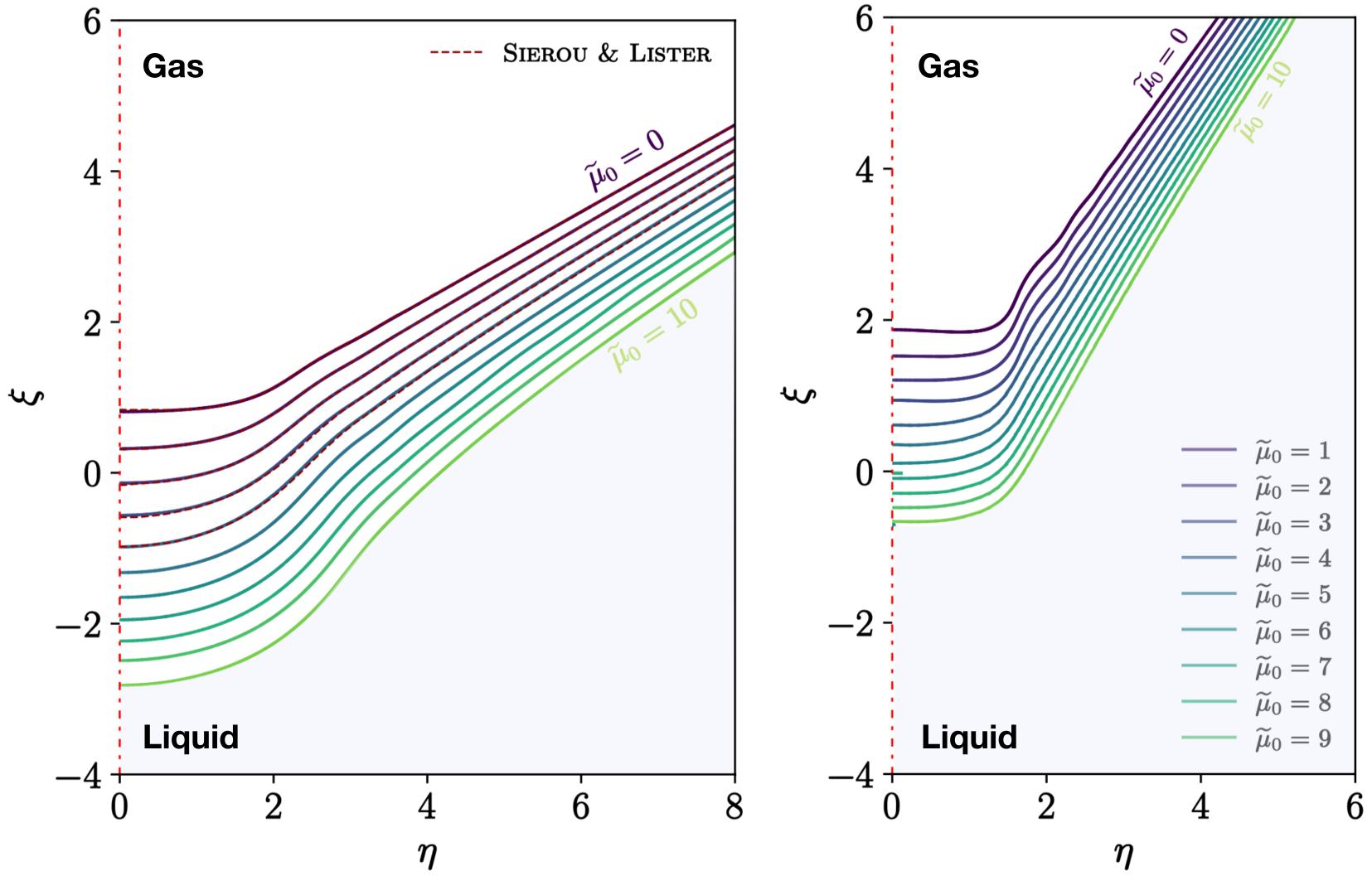


 $L_0 = 1$; $\rho_{liq} = 1$; $\rho_{gas} = 10^{-3}$; $\sigma^{num} = 1$

9

III - 3D-AXI Recoil under a dipolar flow





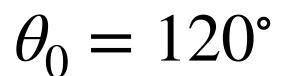
Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

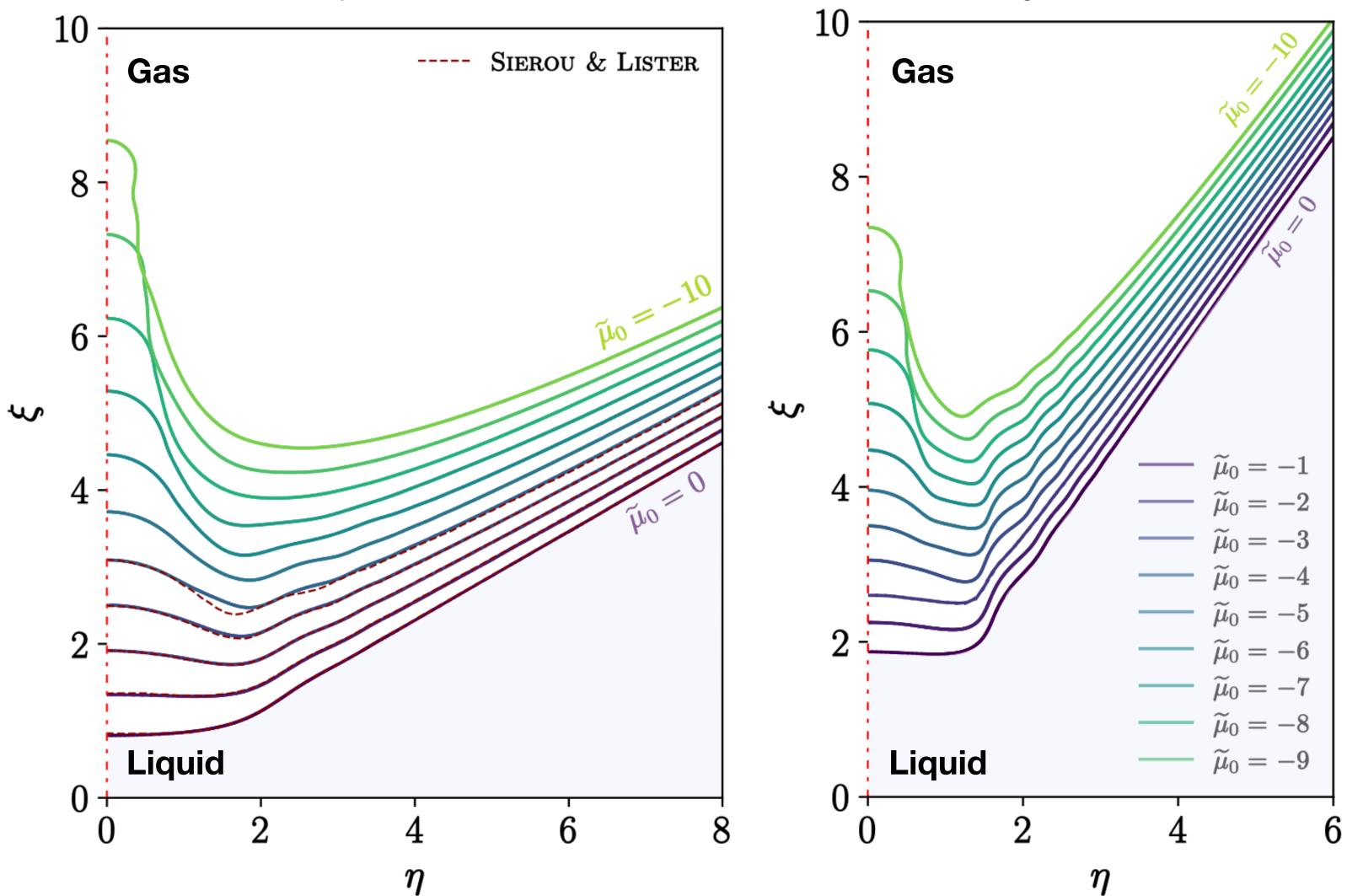
Extended Results of S&L $(\widetilde{\mu}_0 > 0)$

$$\theta_0 = 145^\circ$$

- Self-similar solutions indexed by $(\theta_0, \widetilde{\mu}_0)$
- Capillary waves \nearrow when $\theta_0 \nearrow$, $\widetilde{\mu}_0 \searrow$
- $| \cdot \tilde{\mu}_0 = 0, \ \theta_0 > 90^\circ$: capillary flow moves forward the liquid
- $\tilde{\mu}_0 > 0$: counterbalances the capillary flow

III - 3D-AXI Recoil under a dipolar flow





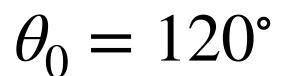
Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

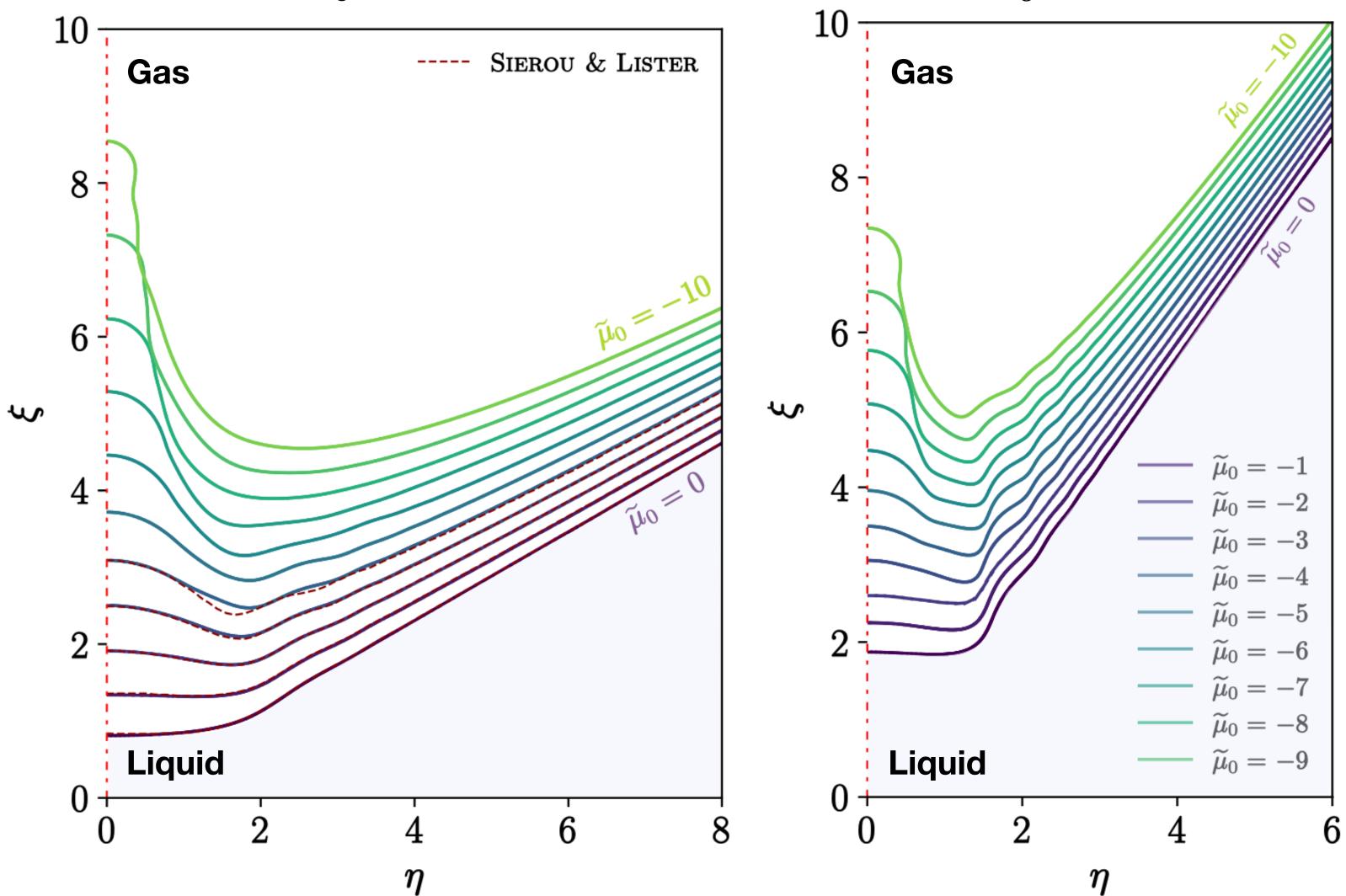
Jets as Extended Results of S&L $(\widetilde{\mu}_0 < 0)$

$$\theta_0 = 145^\circ$$

- $\widetilde{\mu}_0 < 0$: strengthens the capillary flow
- S&L results confirmed and extended
- Self-similar jets profiles unravelled for high $|\widetilde{\mu}_0|$

III - 3D-AXI Recoil under a dipolar flow





Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

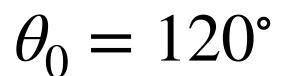
Jets as Extended Results of S&L $(\widetilde{\mu}_0 < 0)$

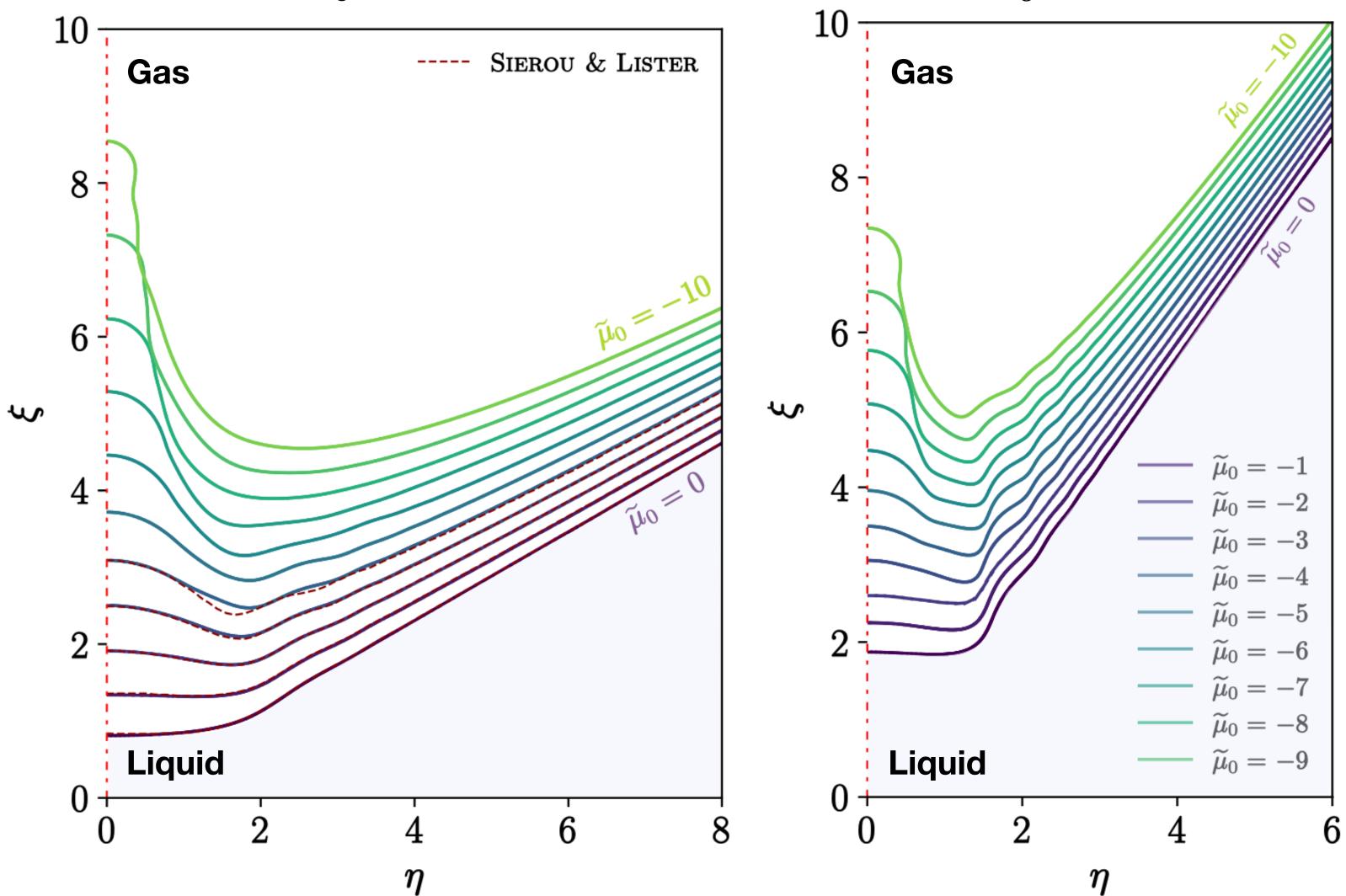
$$\theta_0 = 145^\circ$$

- $\widetilde{\mu}_0 < 0$: strengthens the capillary flow
- S&L results confirmed and extended
- Self-similar jets profiles unravelled for high $|\widetilde{\mu}_0|$

Bartolo & Josserand (2006) Brasz et al. (2018) Lai et al. (2018)

III - 3D-AXI Recoil under a dipolar flow





Sierou & Lister (2004), Self-similar recoil of inviscid drops. Phys. Fluids 16

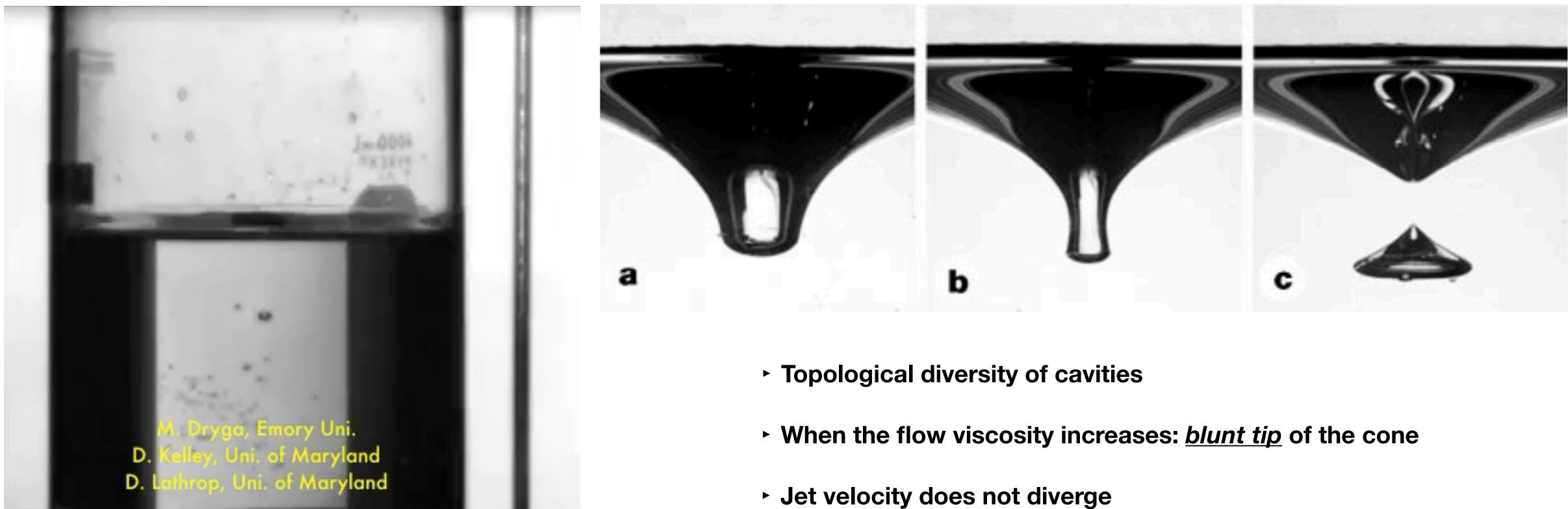
Jets as Extended Results of S&L $(\widetilde{\mu}_0 < 0)$

$$\theta_0 = 145^\circ$$

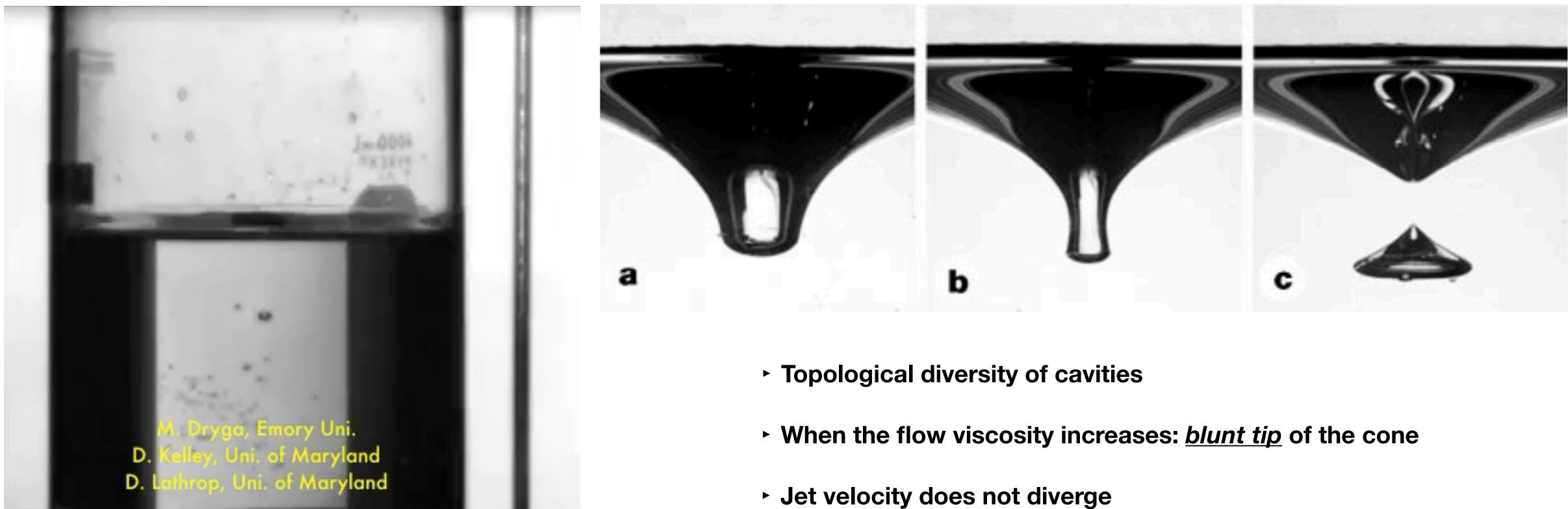
- $\widetilde{\mu}_0 < 0$: strengthens the capillary flow
- S&L results confirmed and extended
- Self-similar jets profiles unravelled for high $|\widetilde{\mu}_0|$

Bartolo & Josserand (2006) Brasz et al. (2018) Lai et al. (2018)

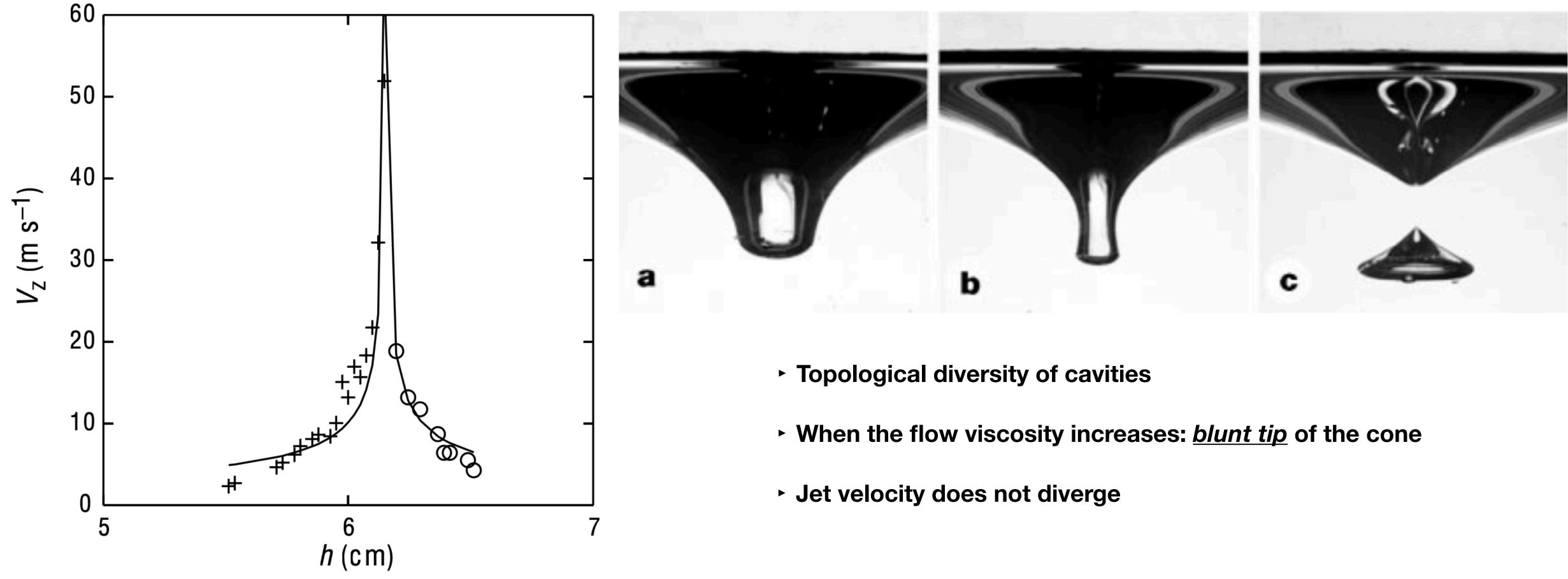
No crossing of the singularity, which has yet to be addressed!



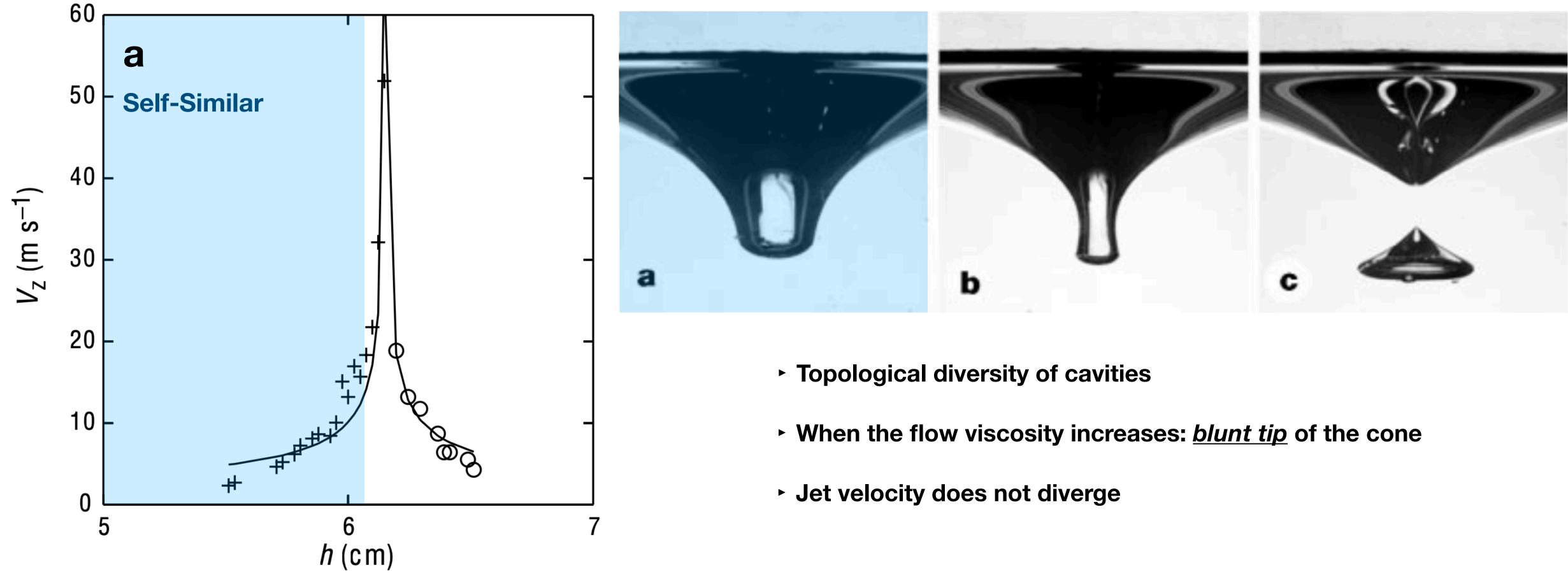
IV.1 - Context



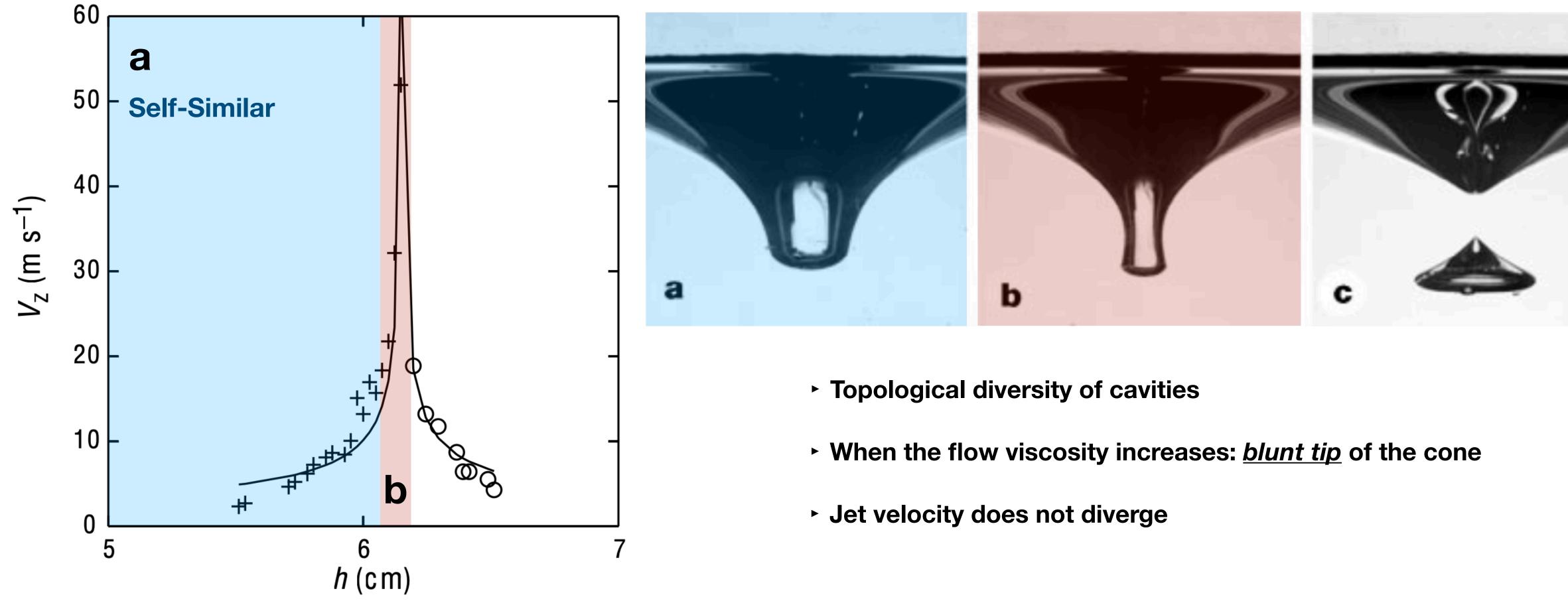
IV.1 - Context



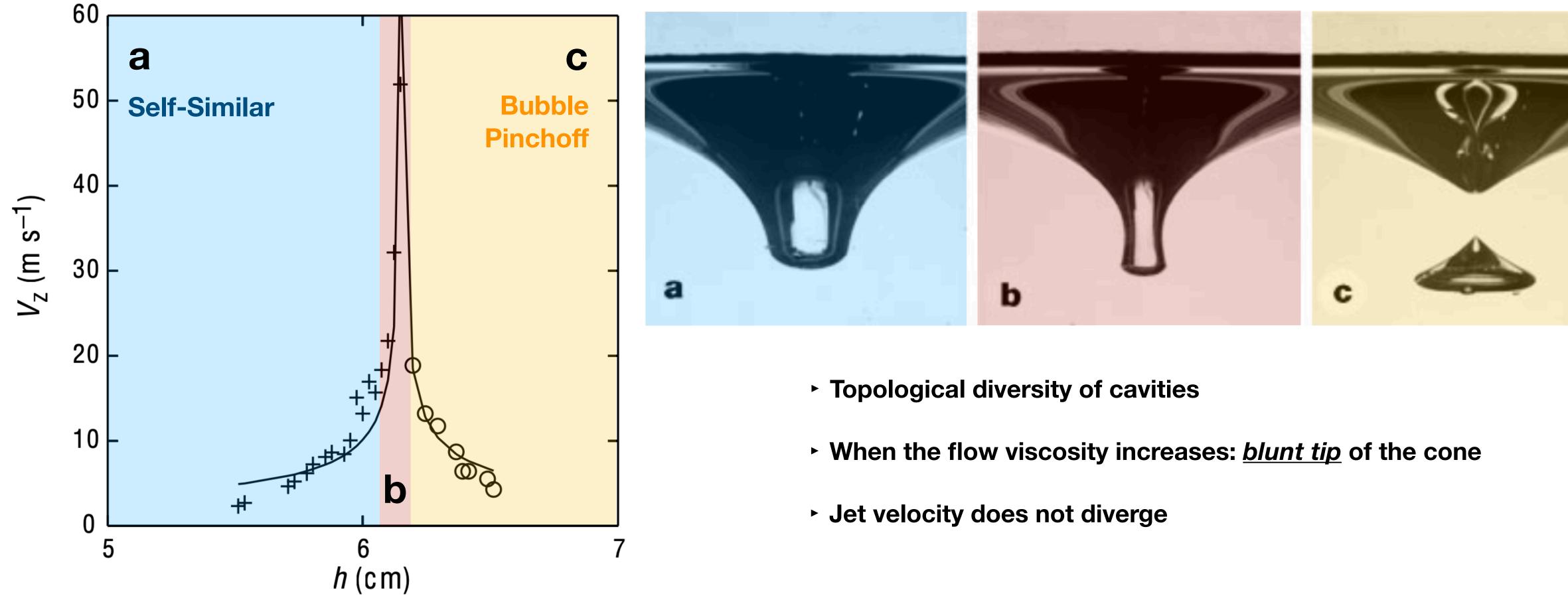
IV.1 - Context



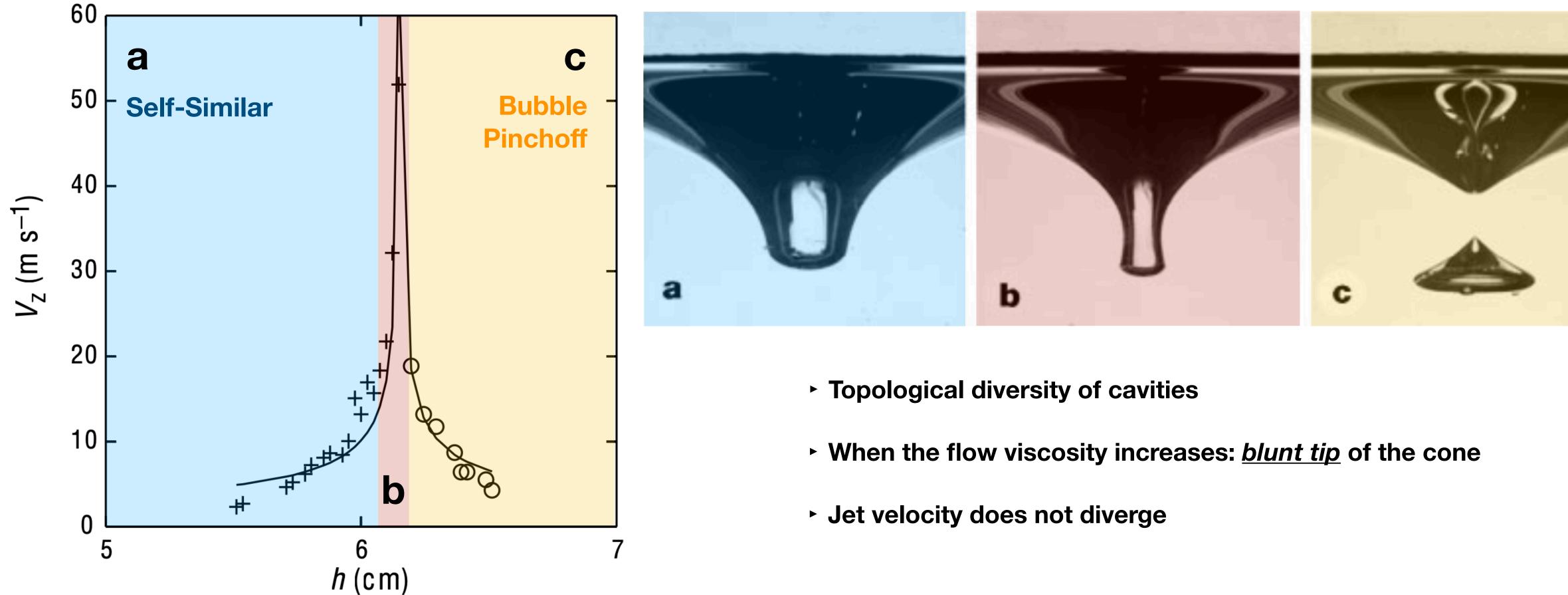
IV.1 - Context



IV.1 - Context



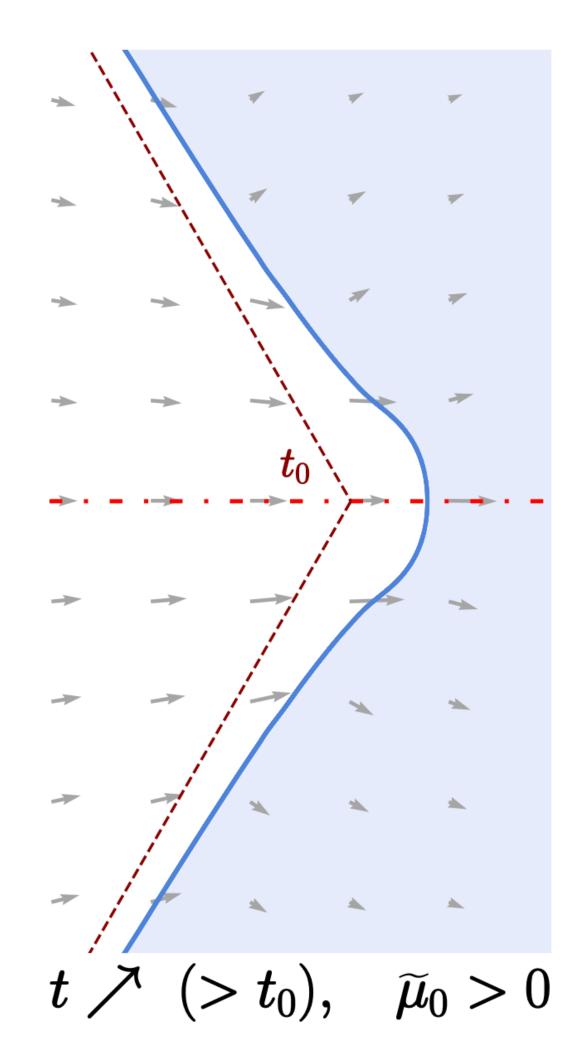
IV.1 - Context



IV.1 - Context

Zeff et al. (2000). Singularity dynamics in curvature collapse and jet eruption on fluid surface. Nature 403

Zeff's "ultraviolet cutoff": viscosity as a regularization mechanism?



Recoil of a singular finite-time cone

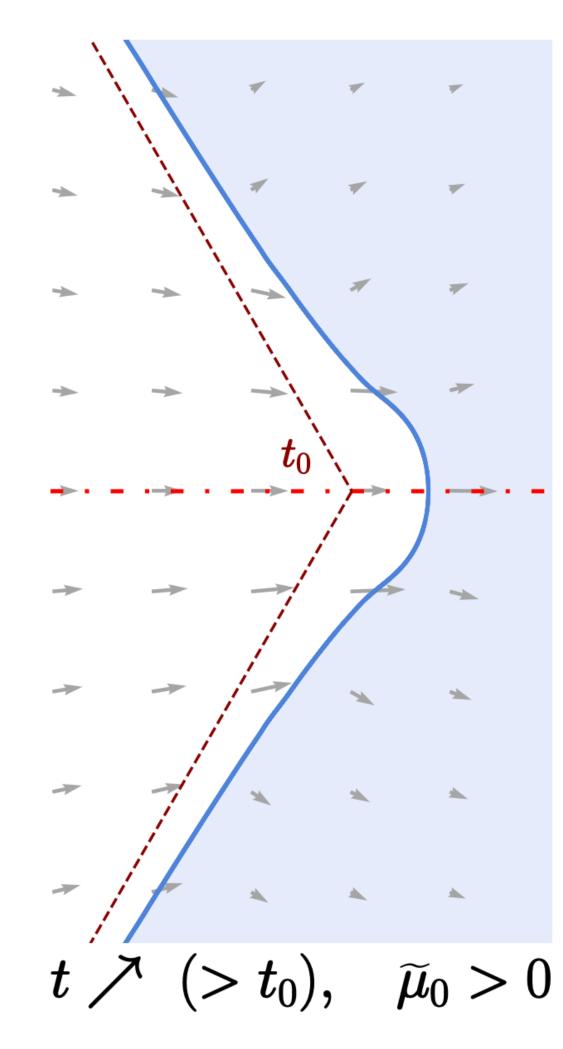
IV.2 - Time Reversal

Sierou & Lister (2004)

With the change of variables:

$$(t - t_0) \rightarrow (t_0 - t)$$

 $\Rightarrow \mathbf{u} \rightarrow -\mathbf{u}, \quad \widetilde{\mu}_0 \rightarrow -\widetilde{\mu}_0$



Recoil of a singular finite-time cone

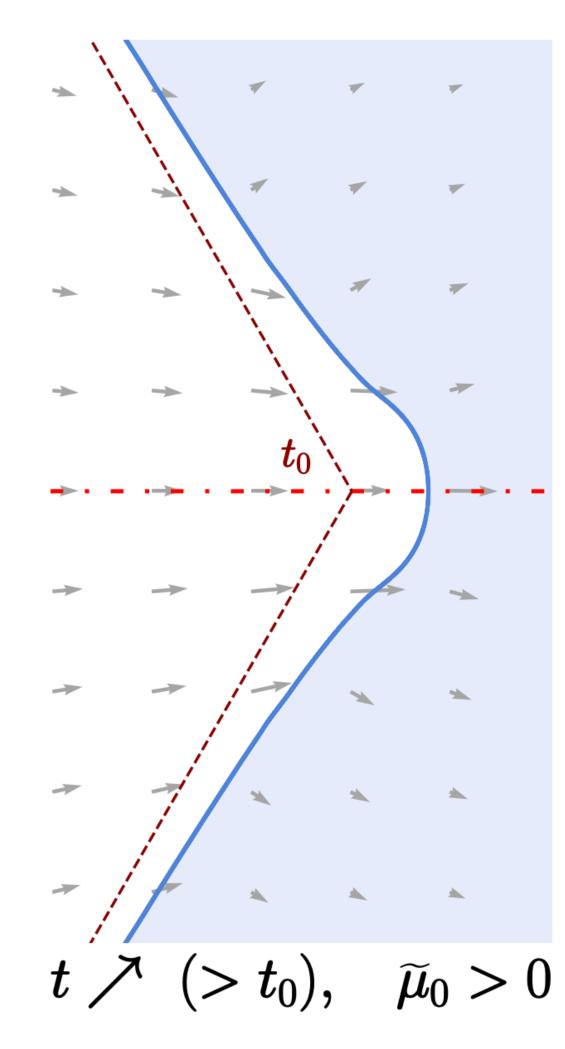
IV.2 - Time Reversal

Sierou & Lister (2004)

With the change of variables:

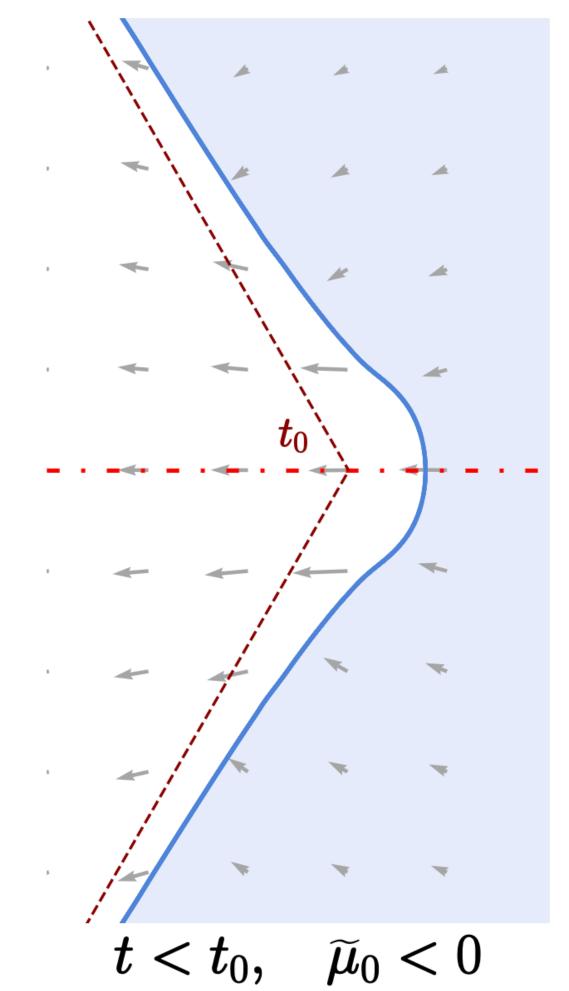
$$(t - t_0) \rightarrow (t_0 - t)$$

 $\Rightarrow \mathbf{u} \rightarrow -\mathbf{u}, \quad \widetilde{\mu}_0 \rightarrow -\widetilde{\mu}_0$



Recoil of a singular finite-time cone

IV.2 - Time Reversal



Time reversal: cavity collapse singular at finite-time

Sierou & Lister (2004)

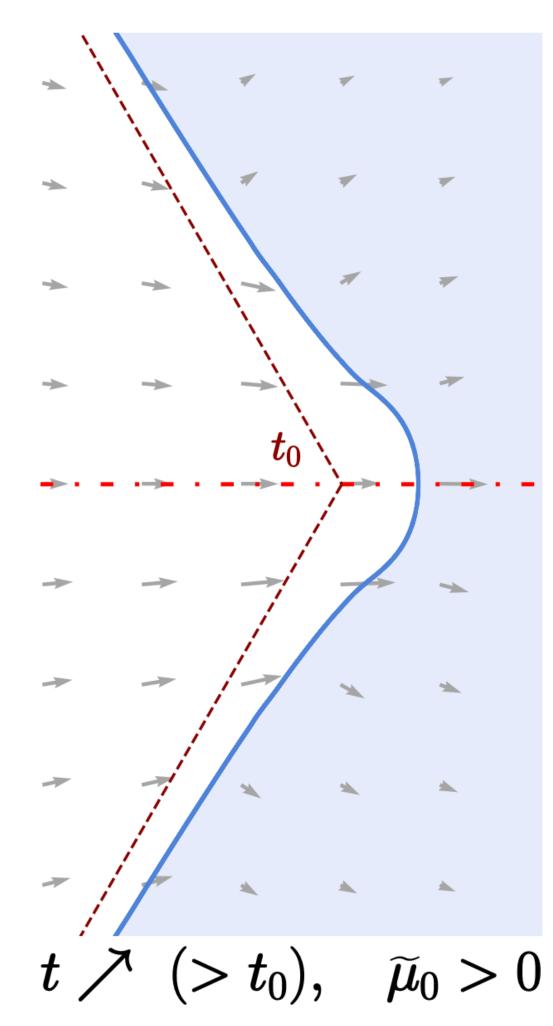
With the change of variables:

$$(t - t_0) \rightarrow (t_0 - t)$$

 $\Rightarrow \mathbf{u} \rightarrow -\mathbf{u}, \quad \widetilde{\mu}_0 \rightarrow -\widetilde{\mu}_0$

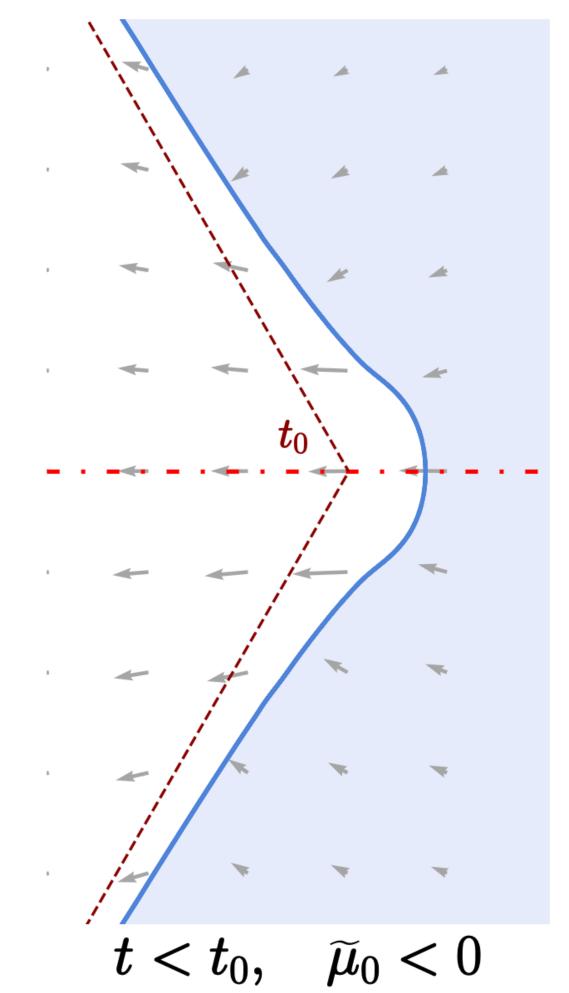
Cavity collapses of bursting bubbles are the *time reversal* of recoiling cones with $\theta_0 > 90^\circ$

Dipolar flow ↔ *Draining flow*



Recoil of a singular finite-time cone

IV.2 - Time Reversal



Time reversal: cavity collapse singular at finite-time

Sierou & Lister (2004)

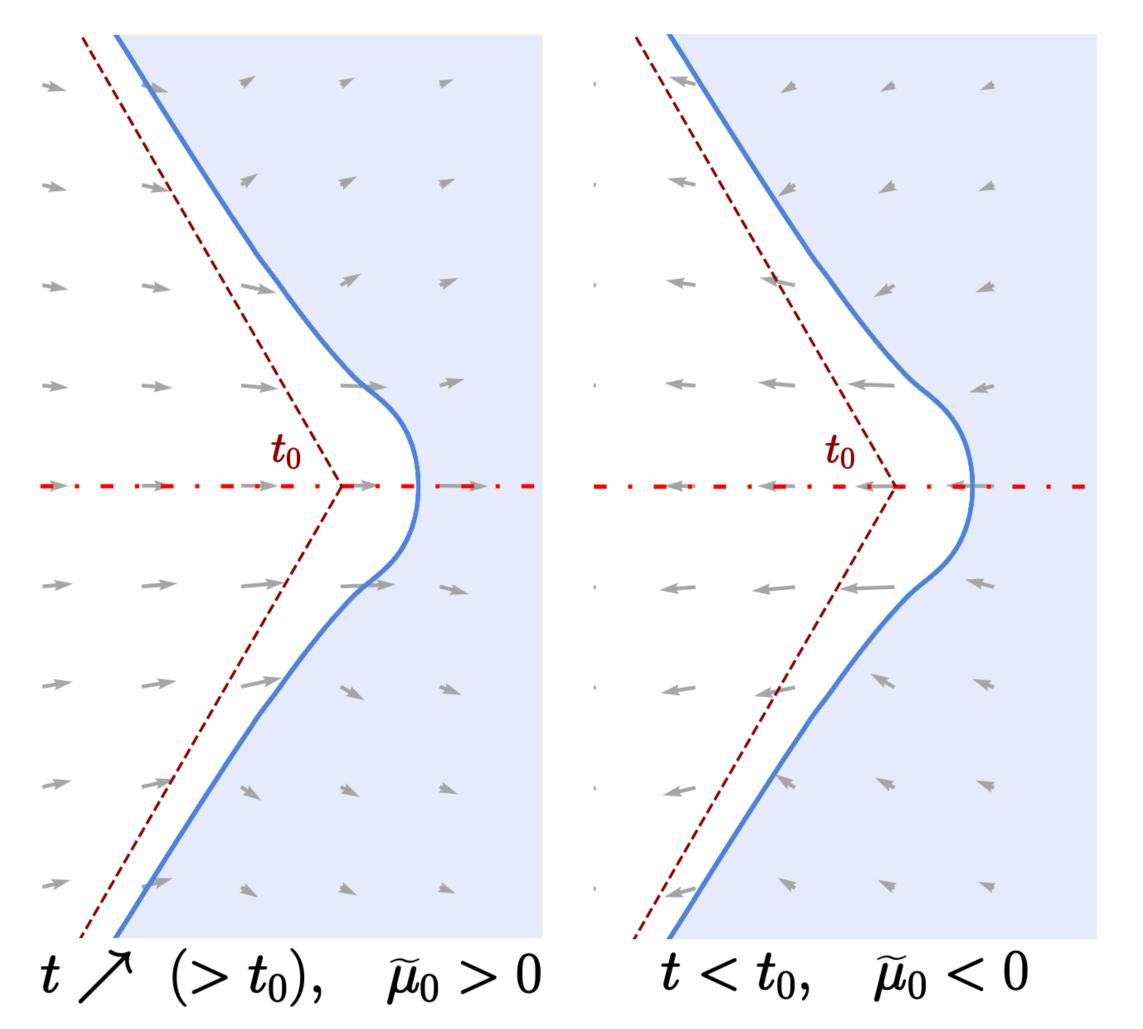
With the change of variables:

$$(t - t_0) \rightarrow (t_0 - t)$$

 $\Rightarrow \mathbf{u} \rightarrow -\mathbf{u}, \quad \widetilde{\mu}_0 \rightarrow -\widetilde{\mu}_0$

Cavity collapses of bursting bubbles are the *time reversal* of recoiling cones with $\theta_0 > 90^\circ$

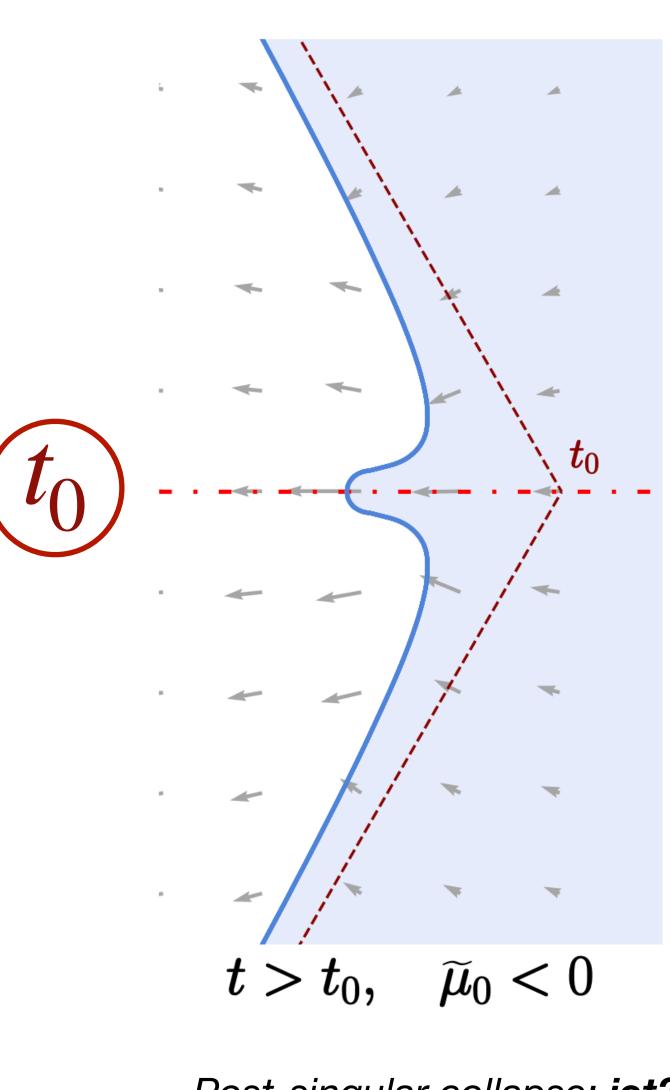
Dipolar flow ↔ *Draining flow*



Recoil of a singular finite-time cone

IV.2 - Time Reversal

Time reversal: cavity collapse singular at finite-time



Post-singular collapse: jet?

Sierou & Lister (2004)

With the change of variables:

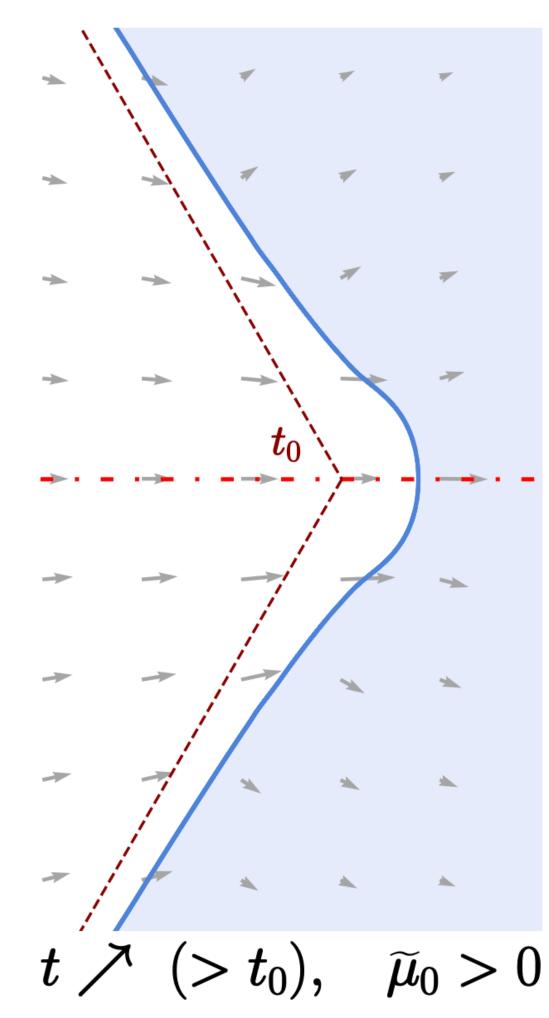
$$(t - t_0) \rightarrow (t_0 - t)$$

 $\Rightarrow \mathbf{u} \rightarrow -\mathbf{u}, \quad \widetilde{\mu}_0 \rightarrow -\widetilde{\mu}_0$

Cavity collapses of bursting bubbles are the *time reversal* of recoiling cones with $\theta_0 > 90^\circ$

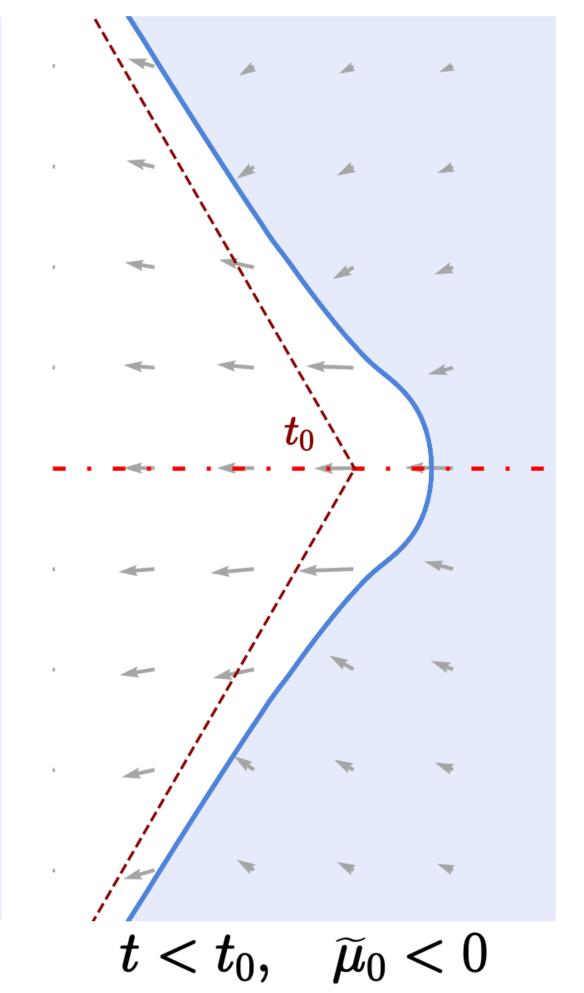
Dipolar flow ↔ *Draining flow*

Test at:
$$|\widetilde{\mu}_0| = 50$$

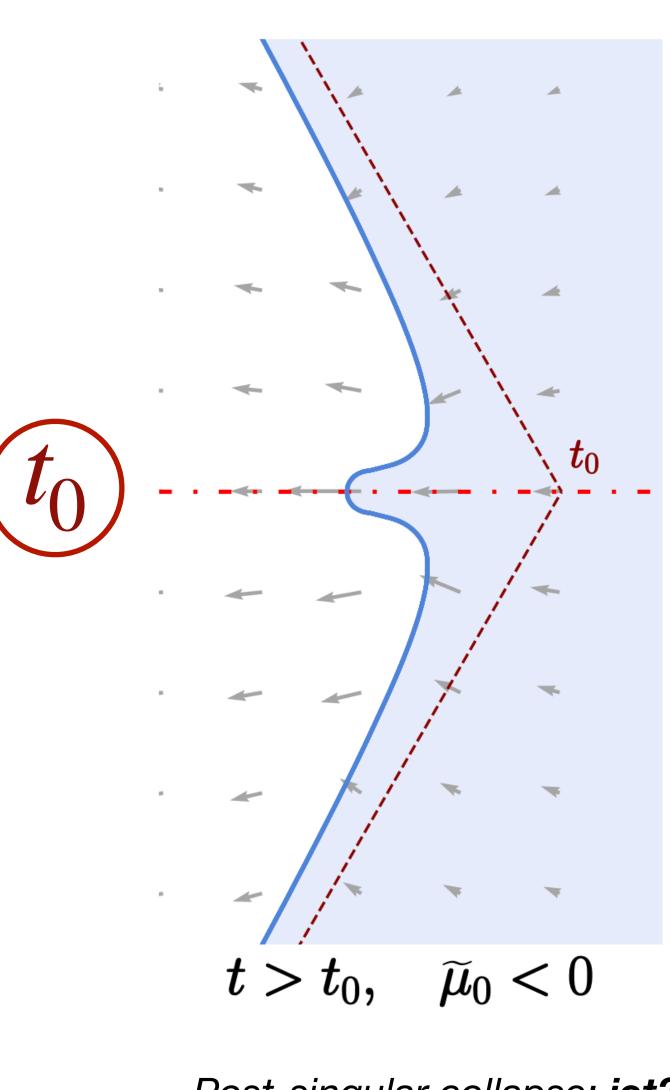


Recoil of a singular finite-time cone

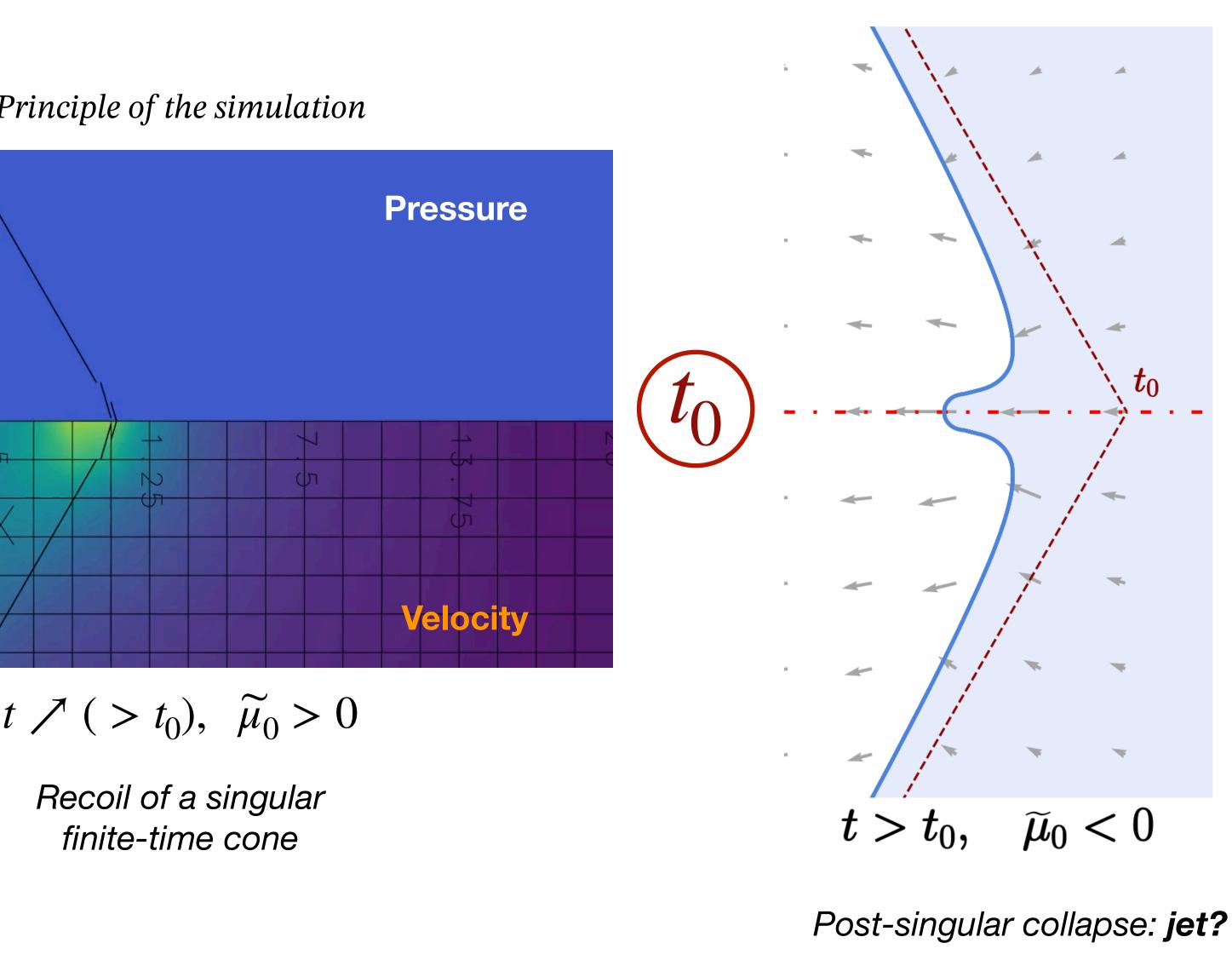
IV.2 - Time Reversal

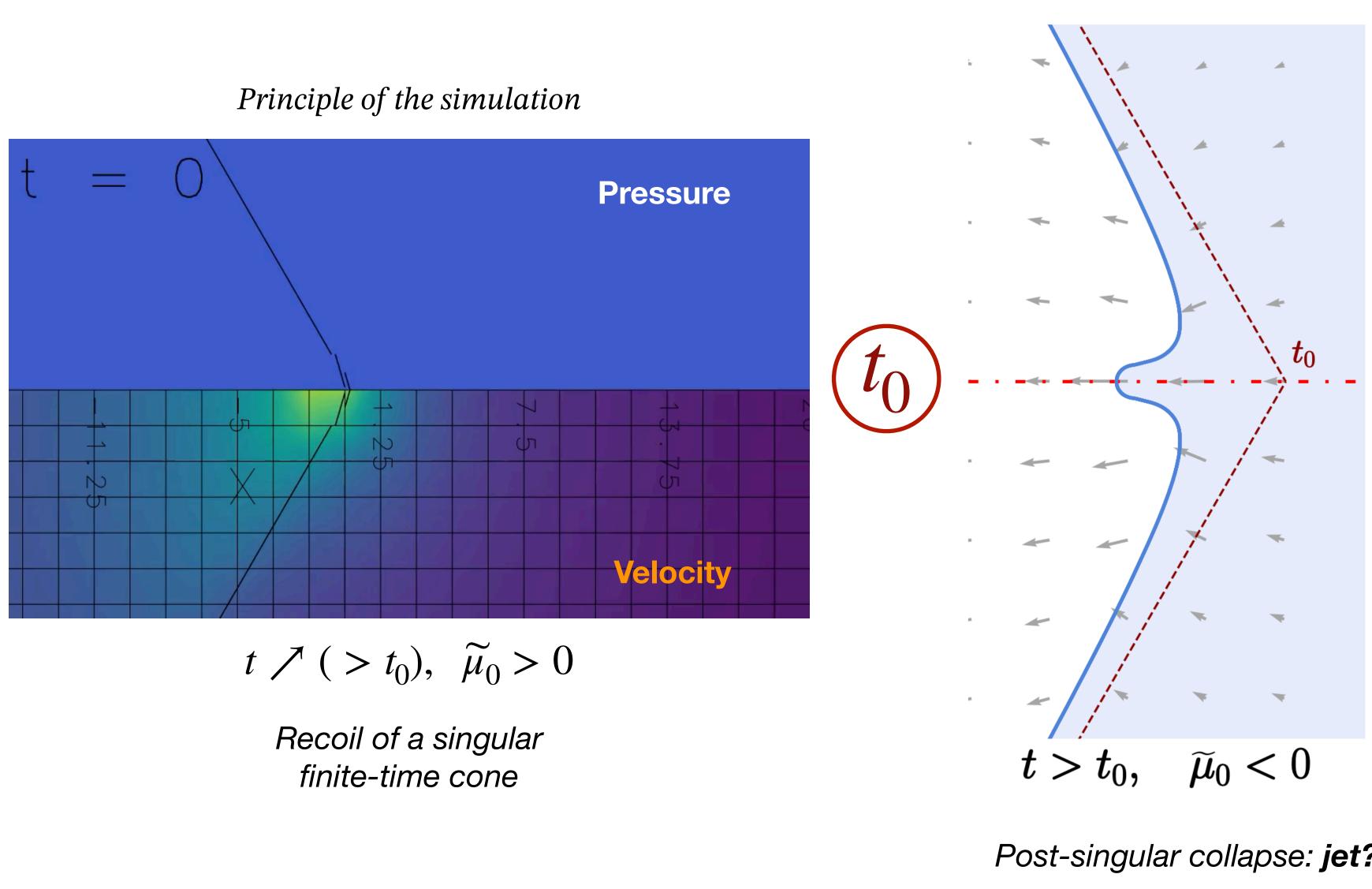


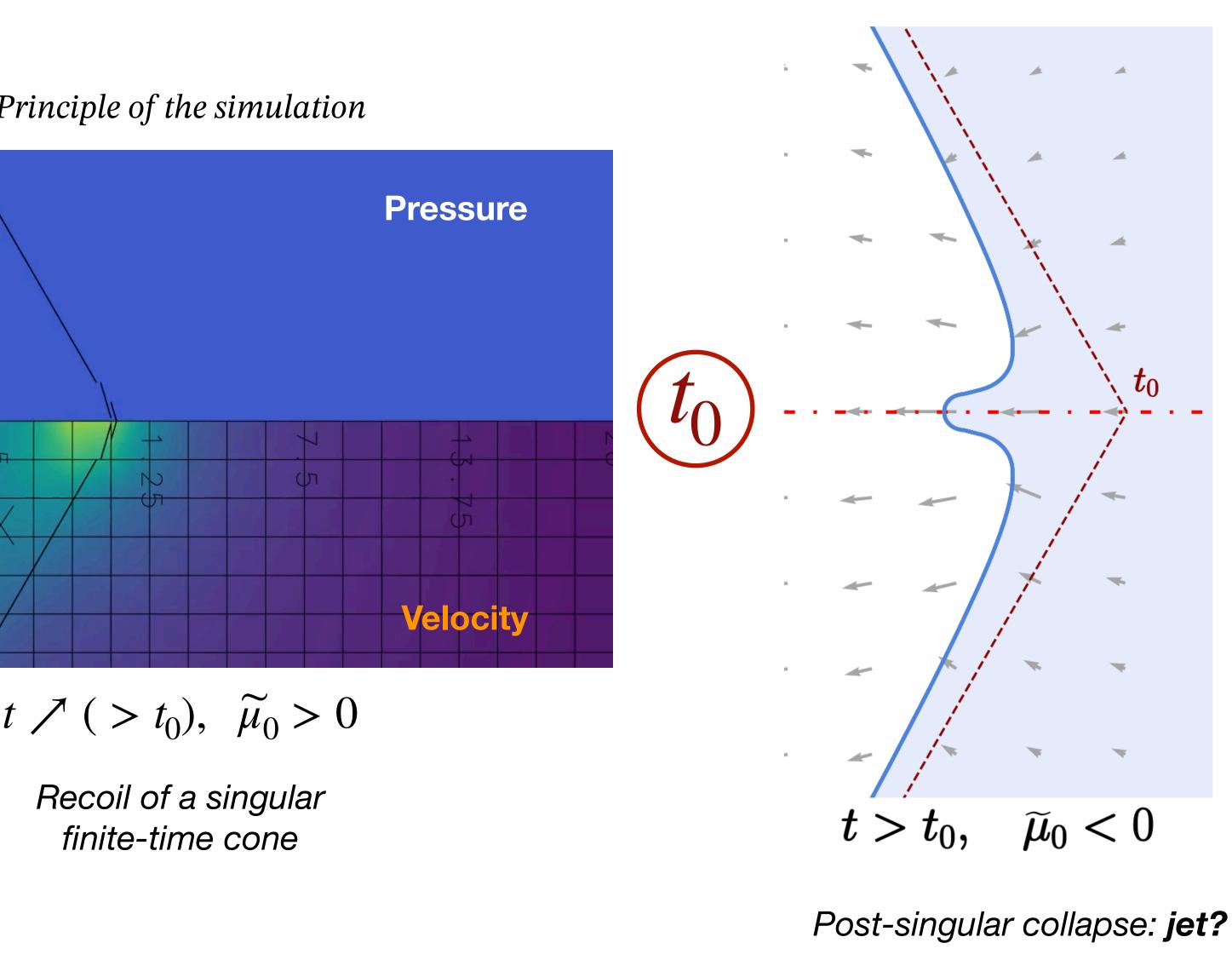
Time reversal: cavity collapse singular at finite-time

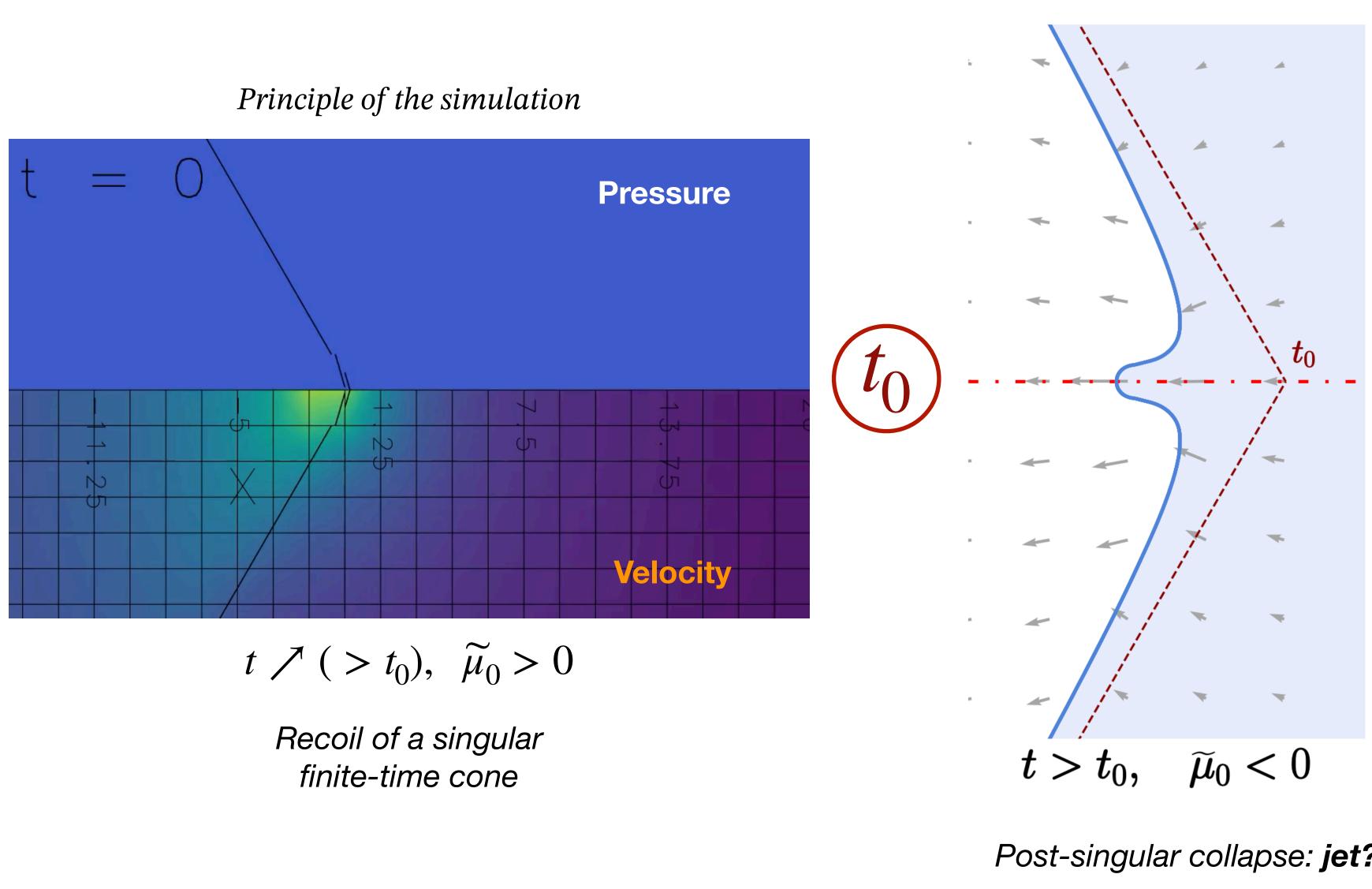


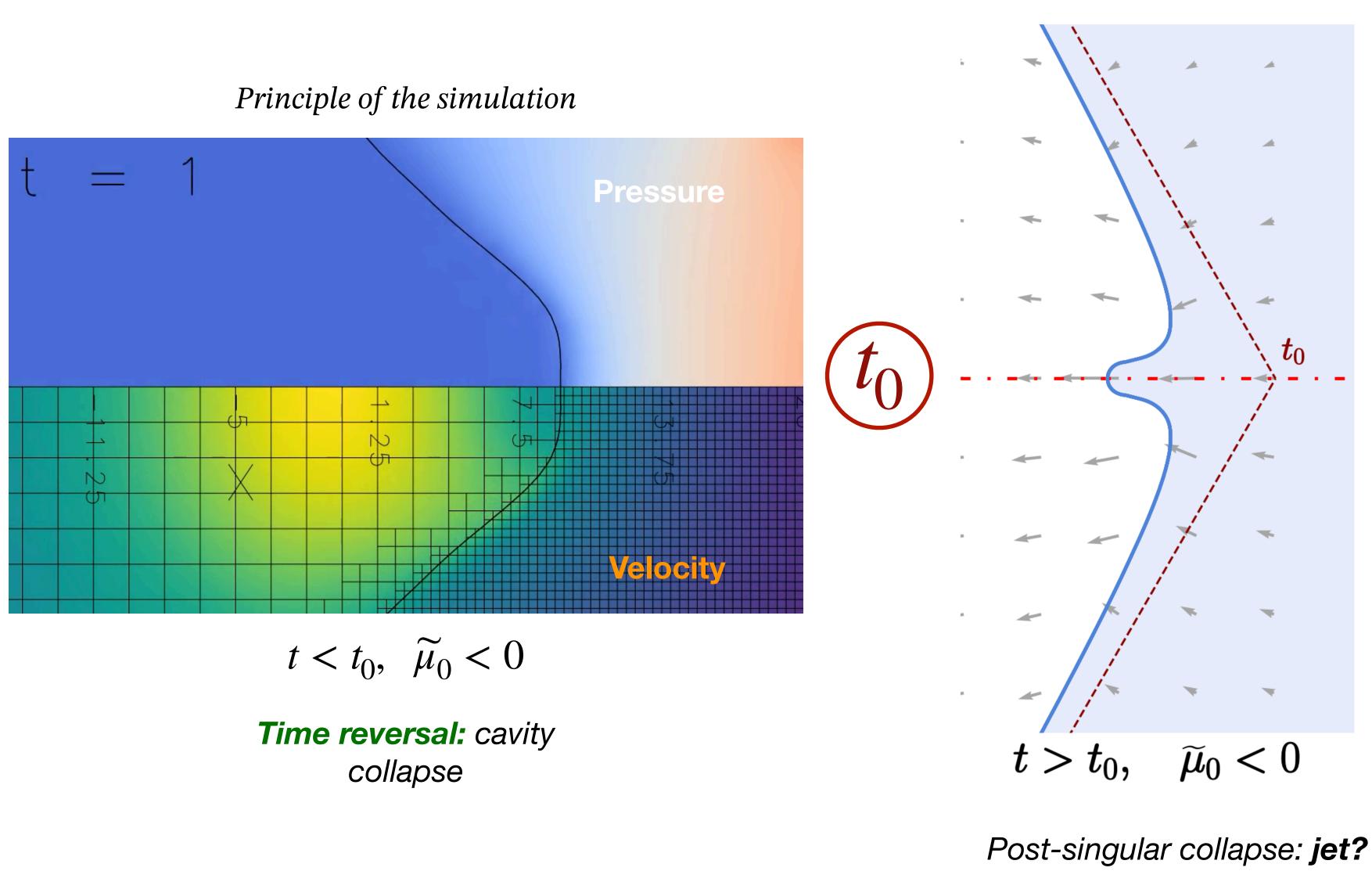
Post-singular collapse: jet?

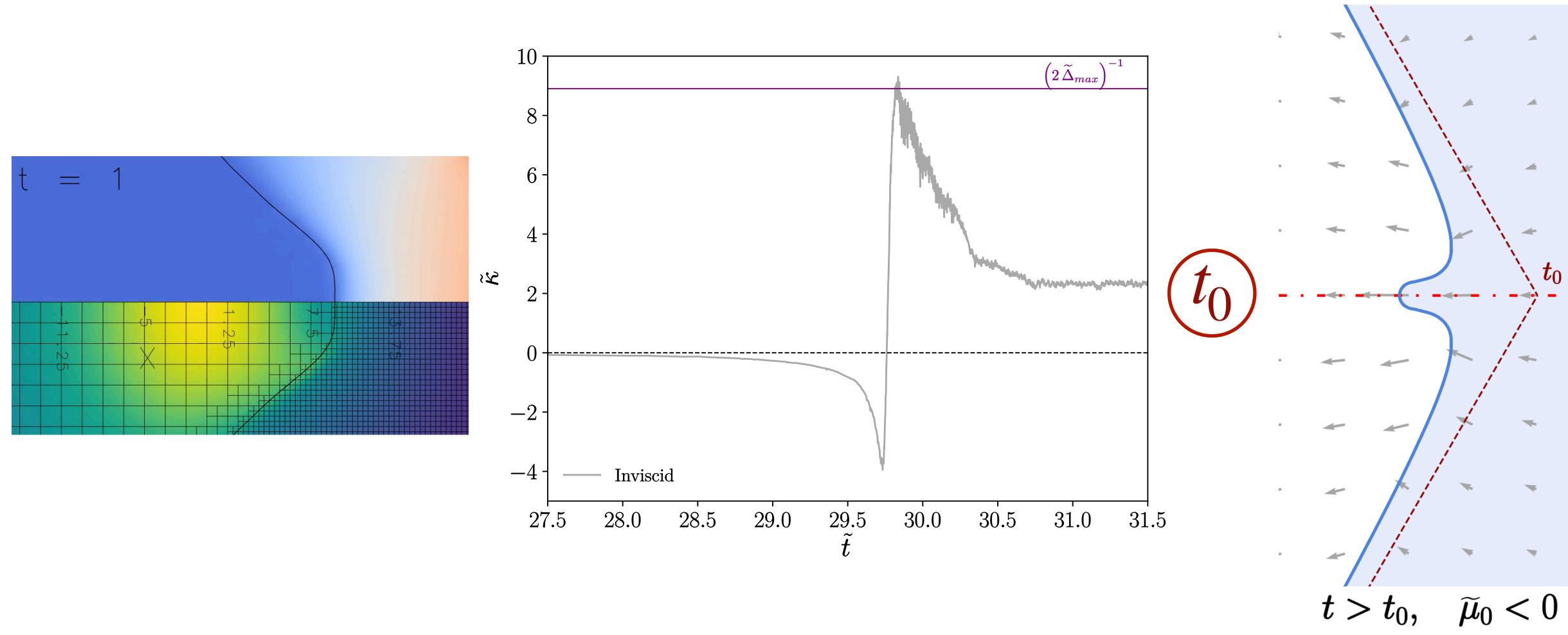




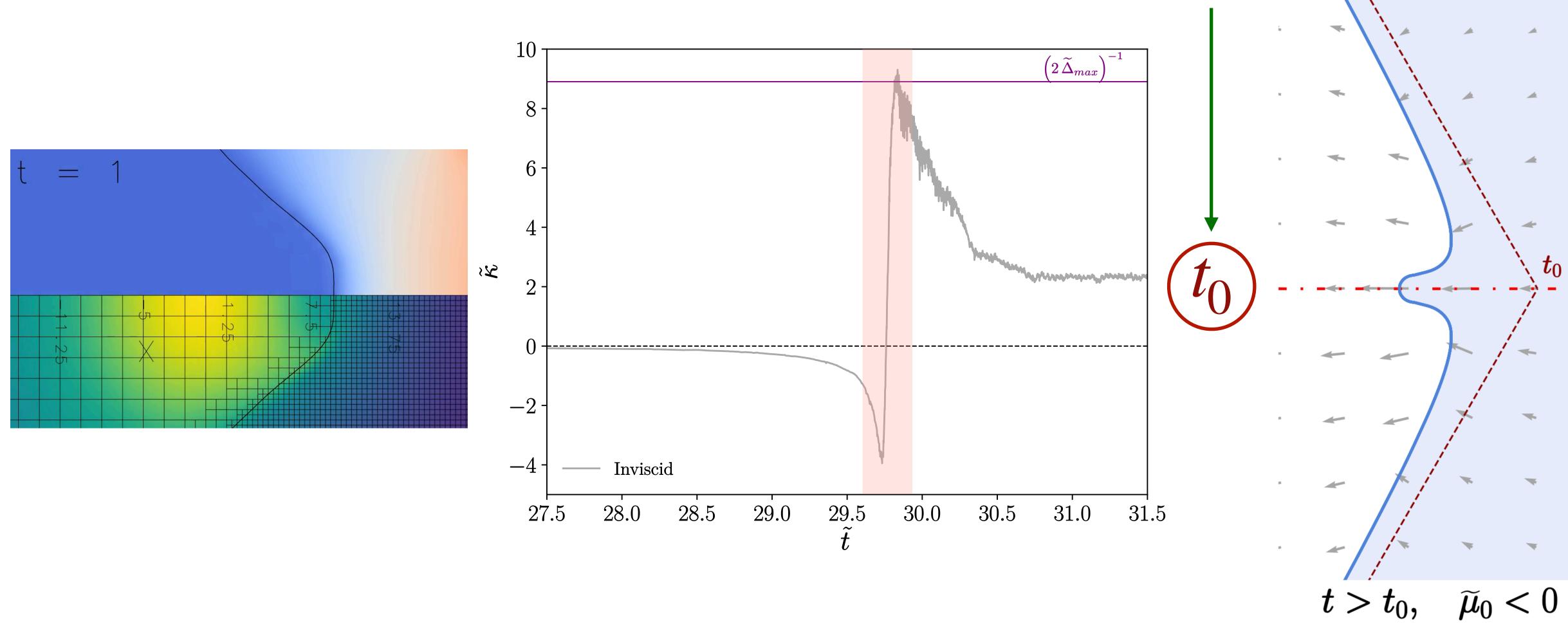








Post-singular collapse: jet?

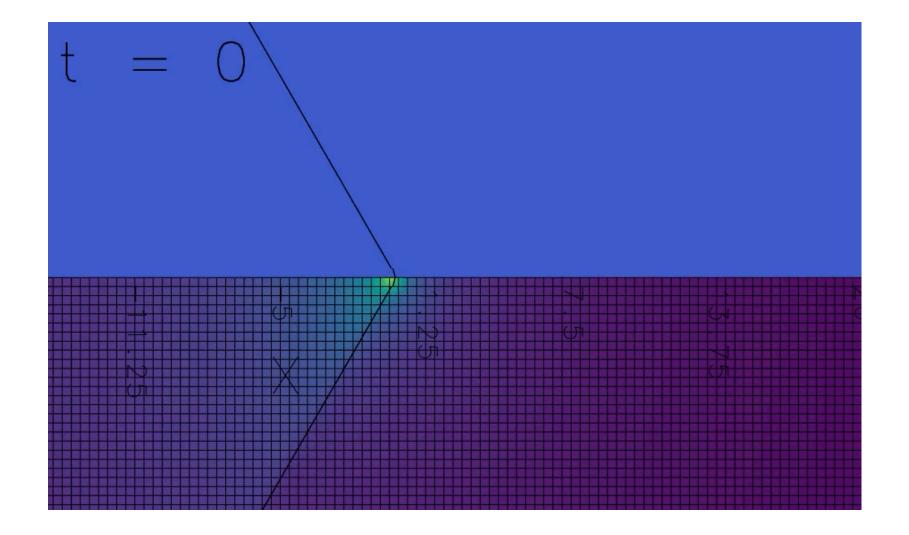


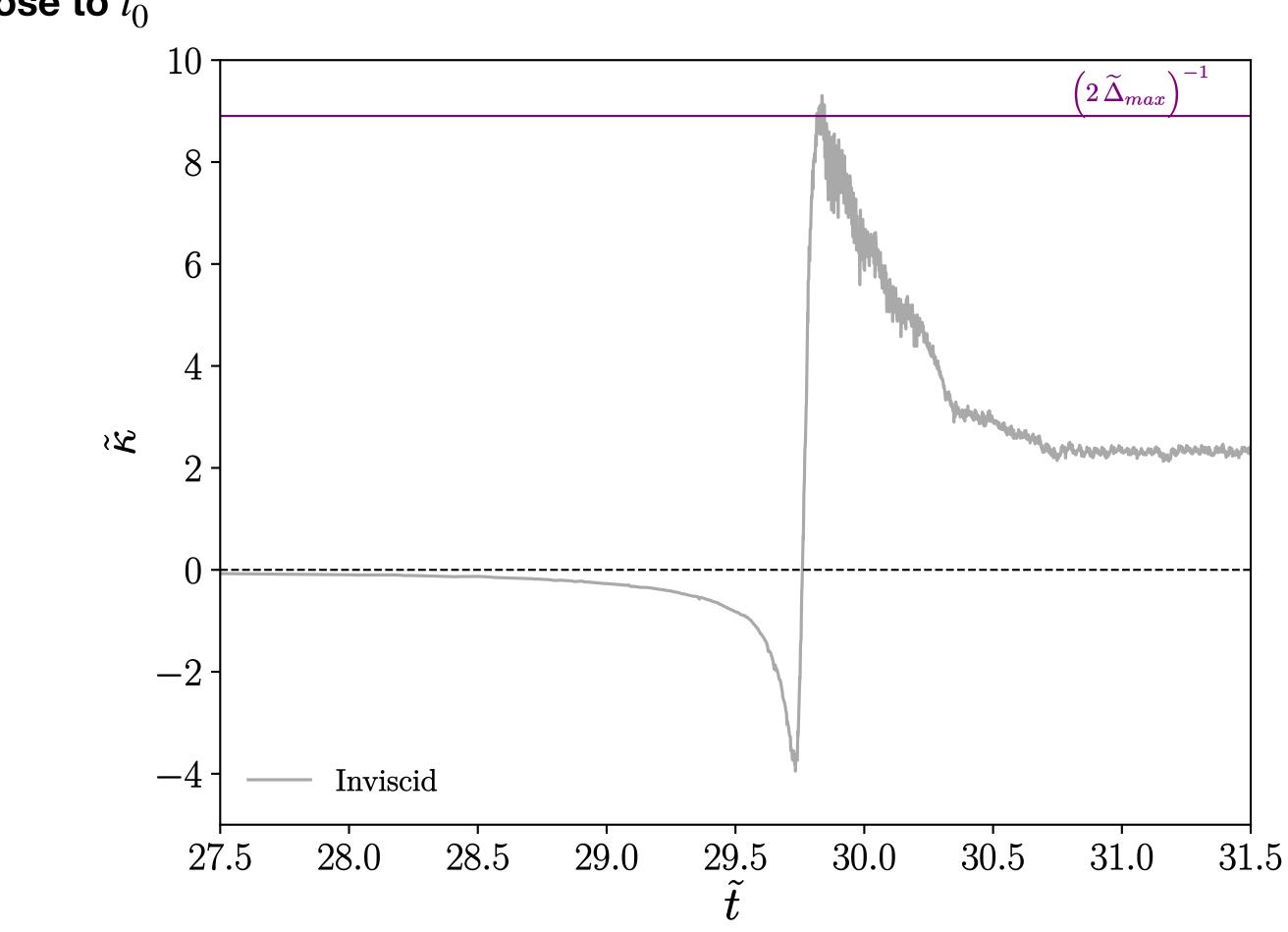
Viscosity for passing through the singularity?

Post-singular collapse: jet?



<u>Goal</u>: to catch a *transitory regime* towards *viscous effects* close to t_0

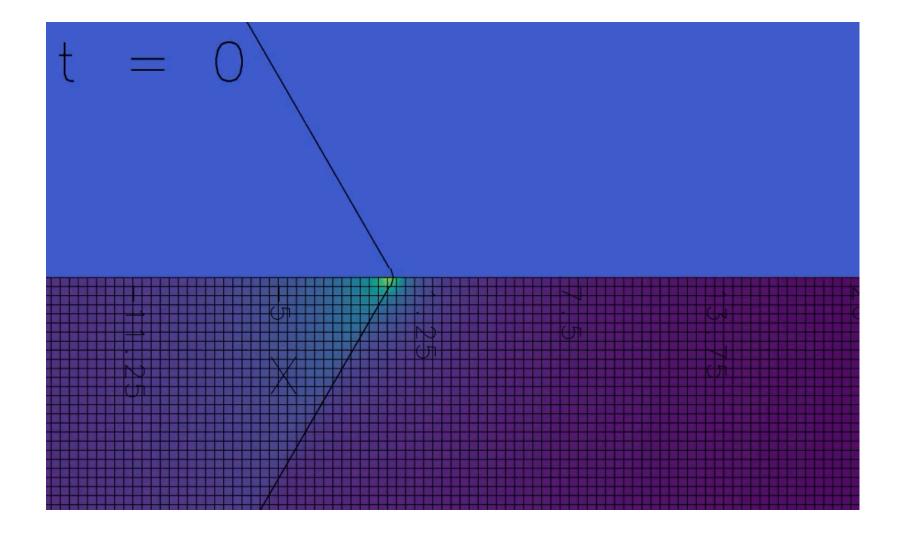


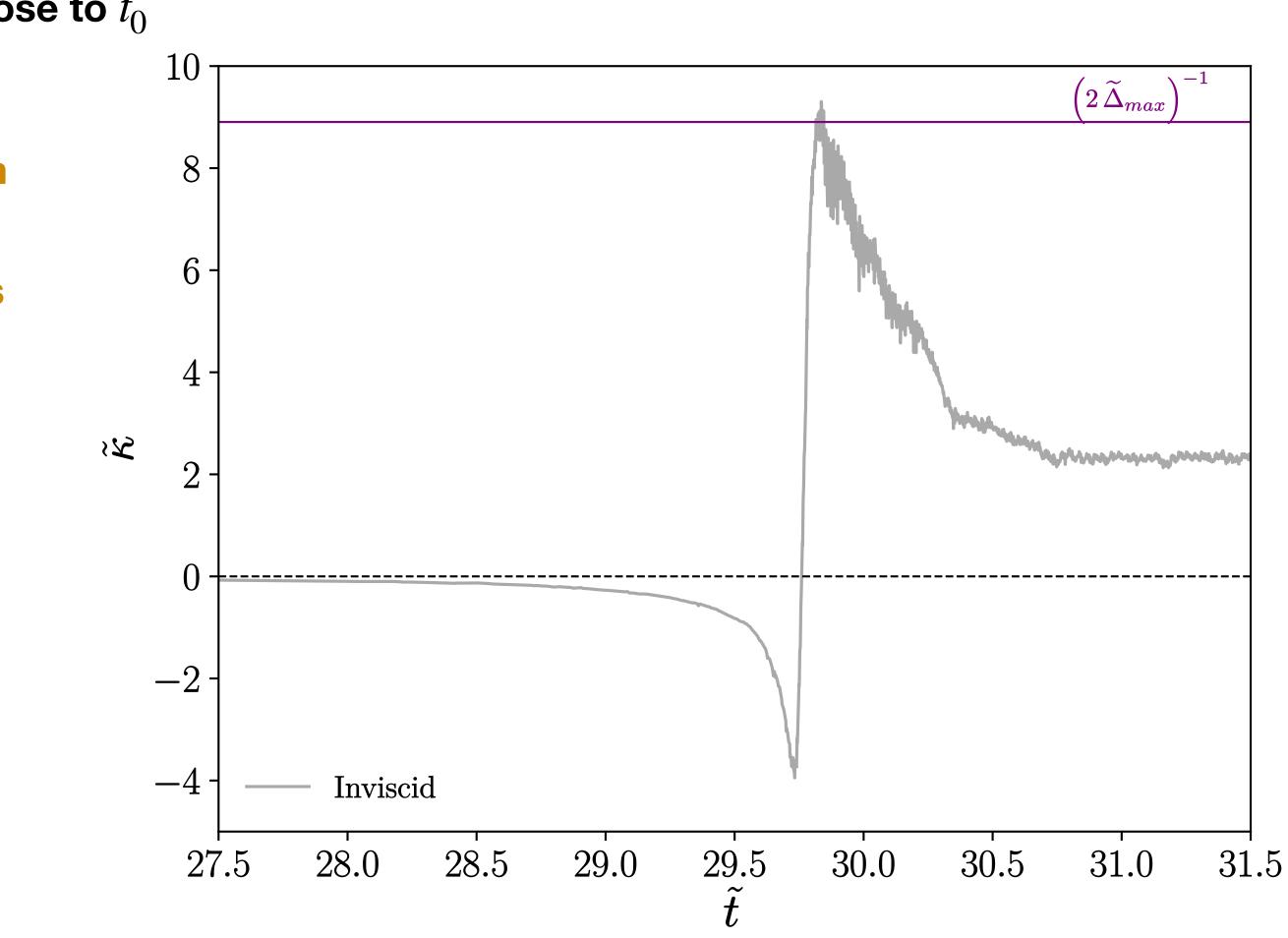


<u>Goal</u>: to catch a *transitory regime* towards *viscous effects* close to t_0

1. Problem non-dimensionalized with viscous scales:

$$\mathcal{C}_{\mu} = \frac{\mu_l^2}{\rho_l \sigma} \quad \text{~water: 10 nm / oil: 100 } \mu\text{m}$$
$$t_{\mu} = \frac{\mu_l^3}{\rho_l \sigma^2} \quad \text{~water: 100 ps / oil: 100 } \mu\text{s}$$



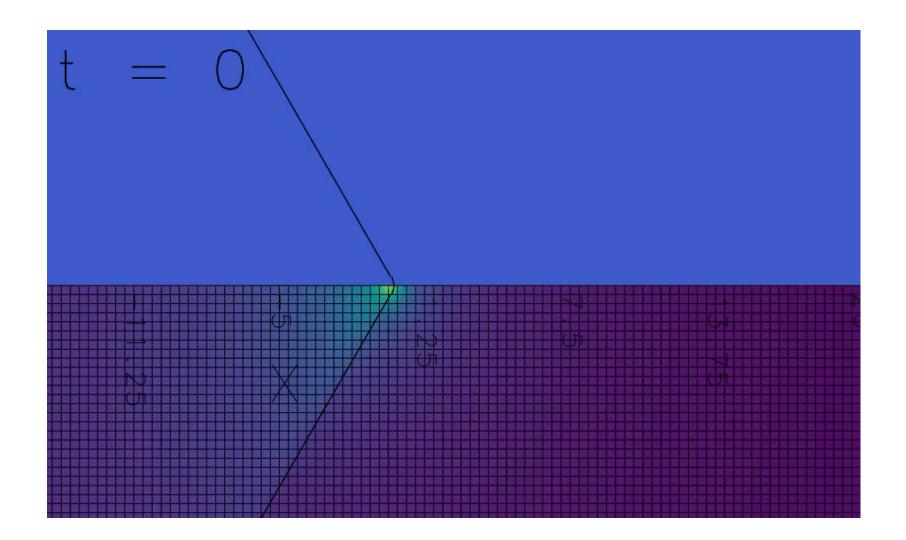


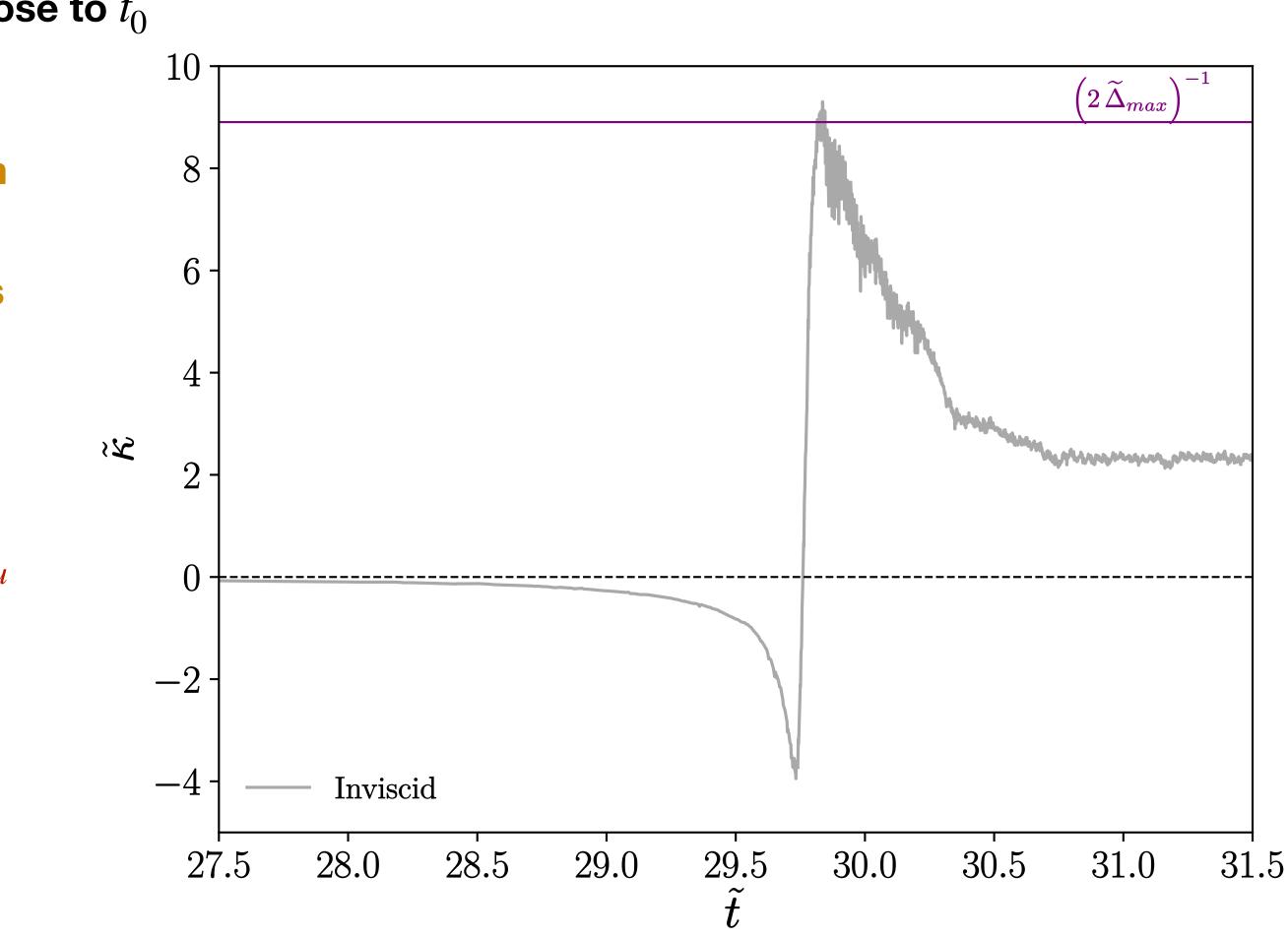
<u>Goal</u>: to catch a *transitory regime* towards *viscous effects* close to t_0

1. Problem non-dimensionalized with viscous scales:

$$\mathscr{\ell}_{\mu} = \frac{\mu_l^2}{\rho_l \sigma} \quad \text{~water: 10 nm / oil: 100 } \mu\text{m}$$
$$t_{\mu} = \frac{\mu_l^3}{\rho_l \sigma^2} \quad \text{~water: 100 ps / oil: 100 } \mu\text{s}$$

- **2.** Take a size domain $\gg L = \ell_{\mu} \rightarrow L = 230 \ell_{\mu}$ [to start in the cap. reg.]
- **3.** Take a grid resolution $\ll \ell_{\mu} \approx 20 \text{ pts} \rightarrow \Delta \approx 0.05 \ell_{\mu}$



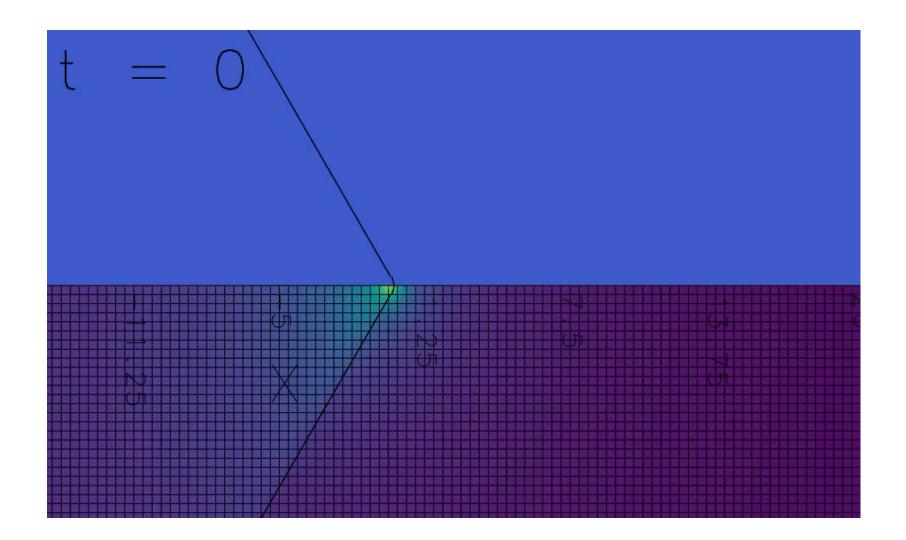


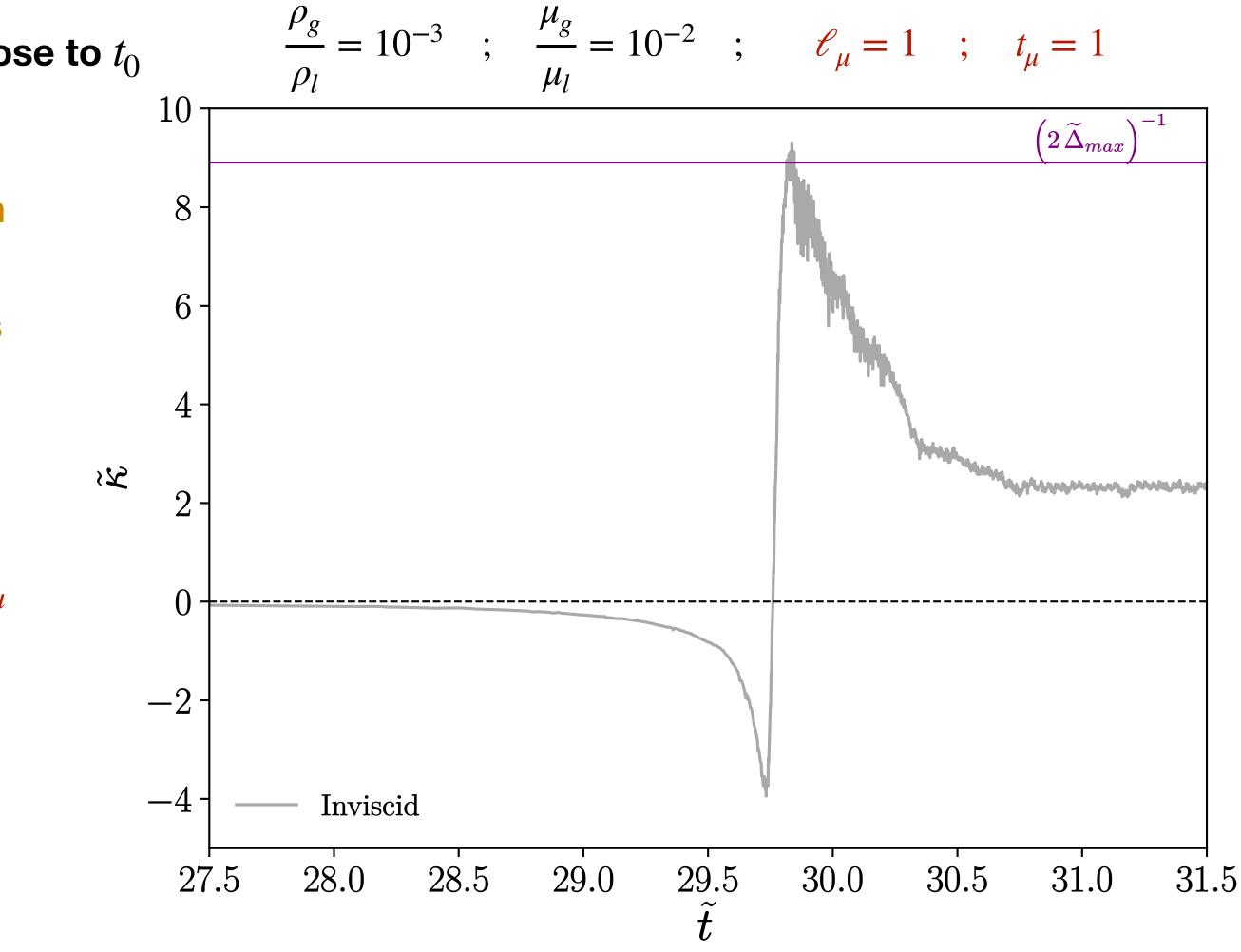
<u>Goal</u>: to catch a *transitory regime* towards *viscous effects* close to t_0

1. Problem non-dimensionalized with viscous scales:

$$\mathscr{\ell}_{\mu} = \frac{\mu_l^2}{\rho_l \sigma} \quad \text{~water: 10 nm / oil: 100 } \mu\text{m}$$
$$t_{\mu} = \frac{\mu_l^3}{\rho_l \sigma^2} \quad \text{~water: 100 ps / oil: 100 } \mu\text{s}$$

- **2.** Take a size domain $\gg L = \ell_{\mu} \rightarrow L = 230 \ell_{\mu}$ [to start in the cap. reg.]
- **3.** Take a grid resolution $\ll \ell_{\mu} \approx 20 \text{ pts} \rightarrow \Delta \approx 0.05 \ell_{\mu}$



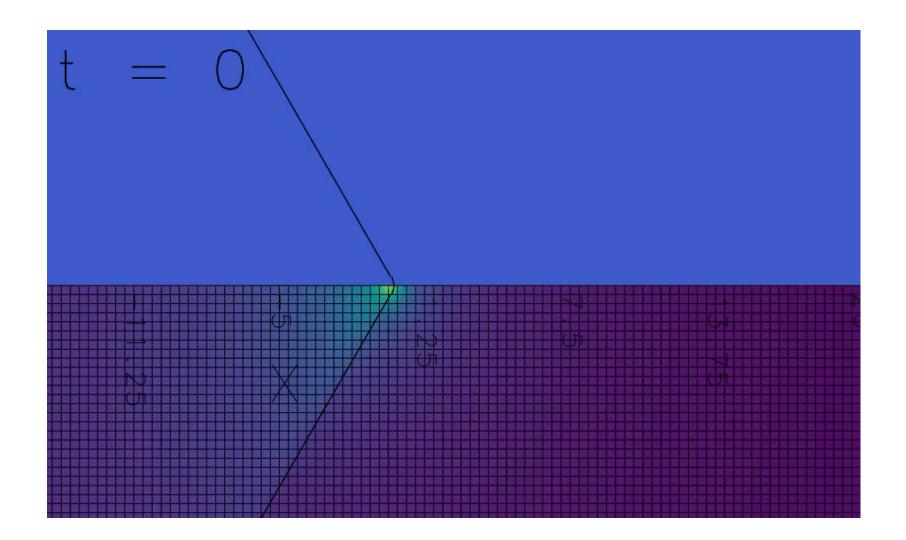


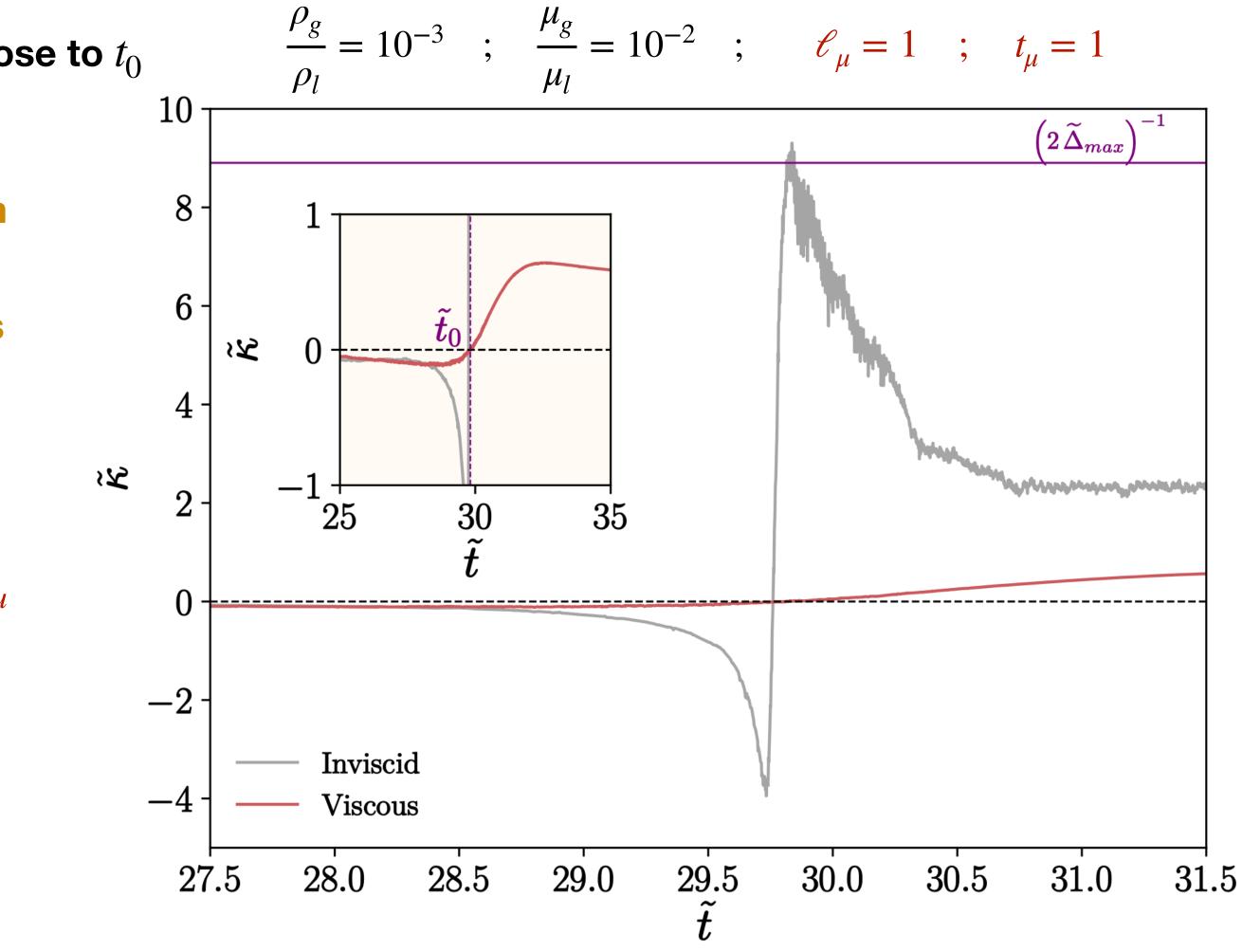
<u>Goal</u>: to catch a *transitory regime* towards *viscous effects* close to t_0

1. Problem non-dimensionalized with viscous scales:

$$\mathscr{\ell}_{\mu} = \frac{\mu_l^2}{\rho_l \sigma} \quad \text{~water: 10 nm / oil: 100 } \mu\text{m}$$
$$t_{\mu} = \frac{\mu_l^3}{\rho_l \sigma^2} \quad \text{~water: 100 ps / oil: 100 } \mu\text{s}$$

- **2.** Take a size domain $\gg L = \ell_{\mu} \rightarrow L = 230 \ell_{\mu}$ [to start in the cap. reg.]
- **3.** Take a grid resolution $\ll \ell_{\mu} \approx 20 \text{ pts} \rightarrow \Delta \approx 0.05 \ell_{\mu}$



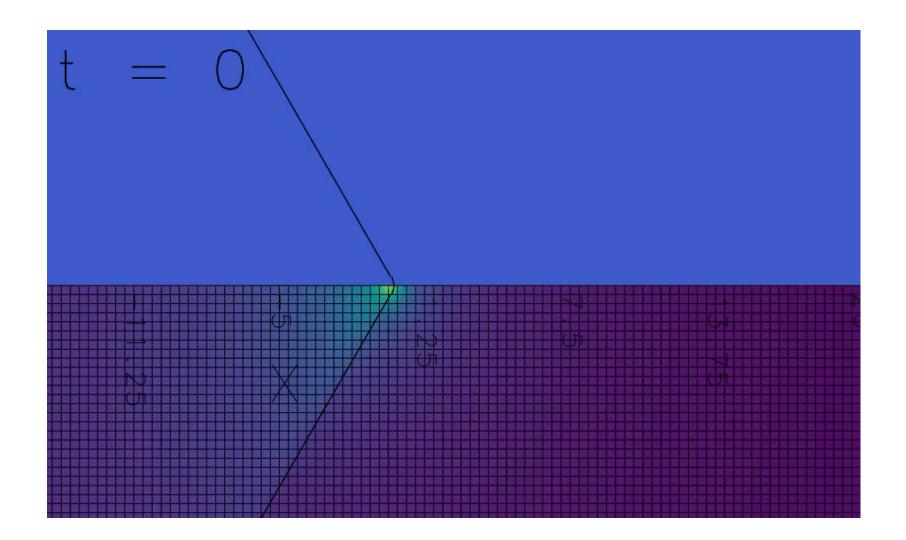


<u>Goal</u>: to catch a *transitory regime* towards *viscous effects* close to t_0

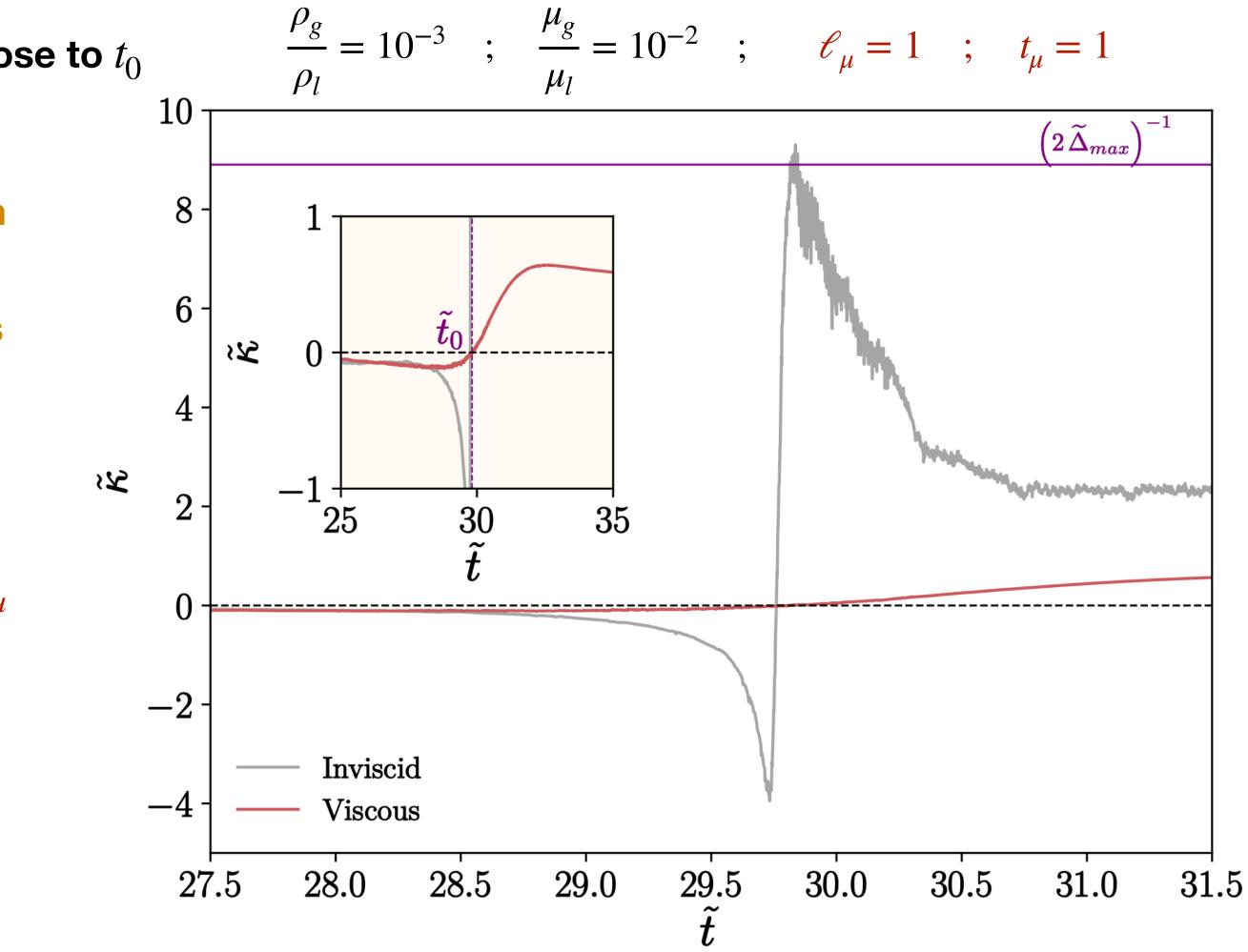
1. Problem non-dimensionalized with viscous scales:

$$\mathscr{\ell}_{\mu} = \frac{\mu_l^2}{\rho_l \sigma} \quad \text{~water: 10 nm / oil: 100 } \mu\text{m}$$
$$t_{\mu} = \frac{\mu_l^3}{\rho_l \sigma^2} \quad \text{~water: 100 ps / oil: 100 } \mu\text{s}$$

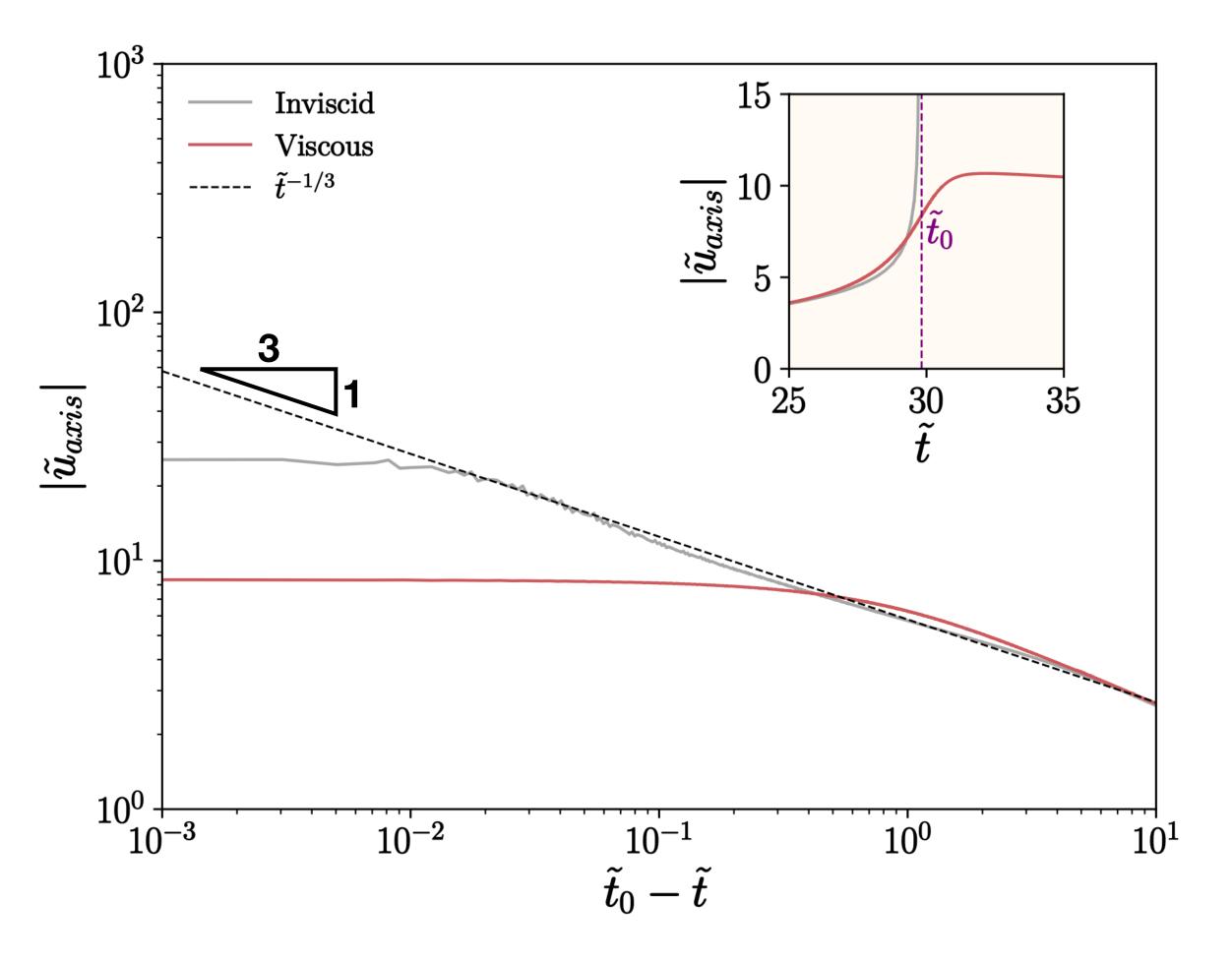
- **2.** Take a size domain $\gg L = \ell_{\mu} \rightarrow L = 230 \ell_{\mu}$ [to start in the cap. reg.]
- **3.** Take a grid resolution $\ll \ell_{\mu} \approx 20 \text{ pts} \rightarrow \Delta \approx 0.05 \ell_{\mu}$



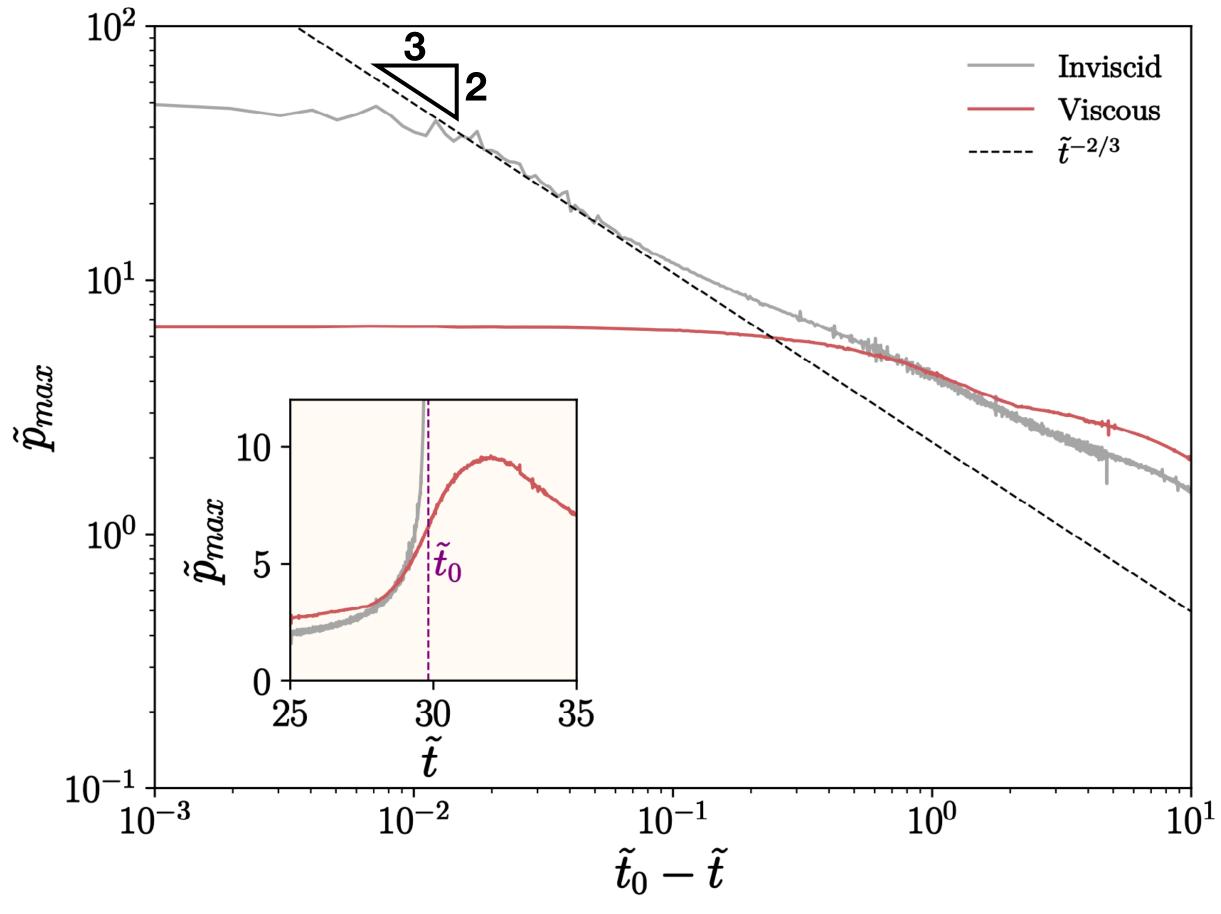
IV.4 - Viscous Simulations Settings



Singularity horizon passed through **physically** with viscosity

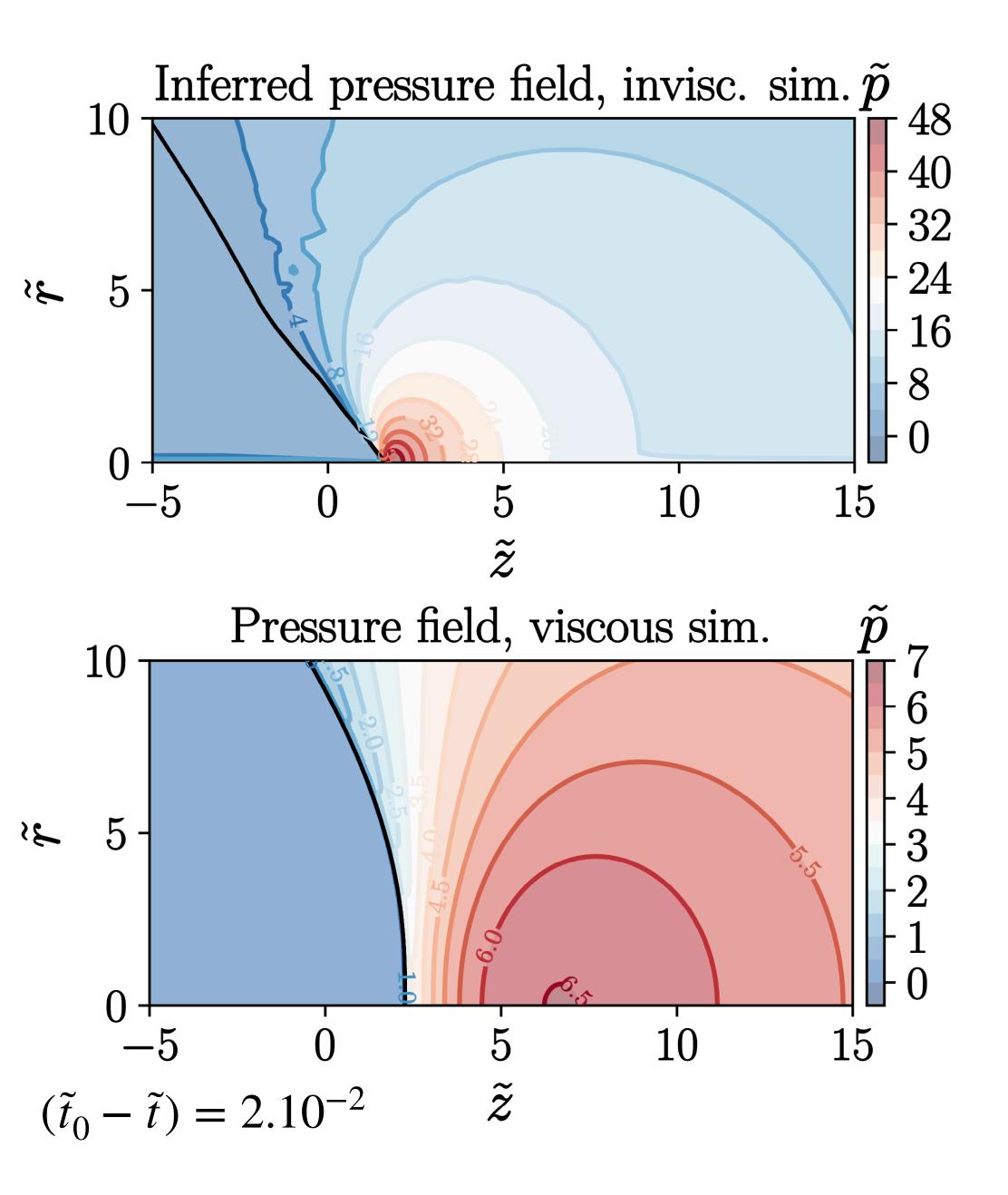


IV.5 - Leaving self-similarity



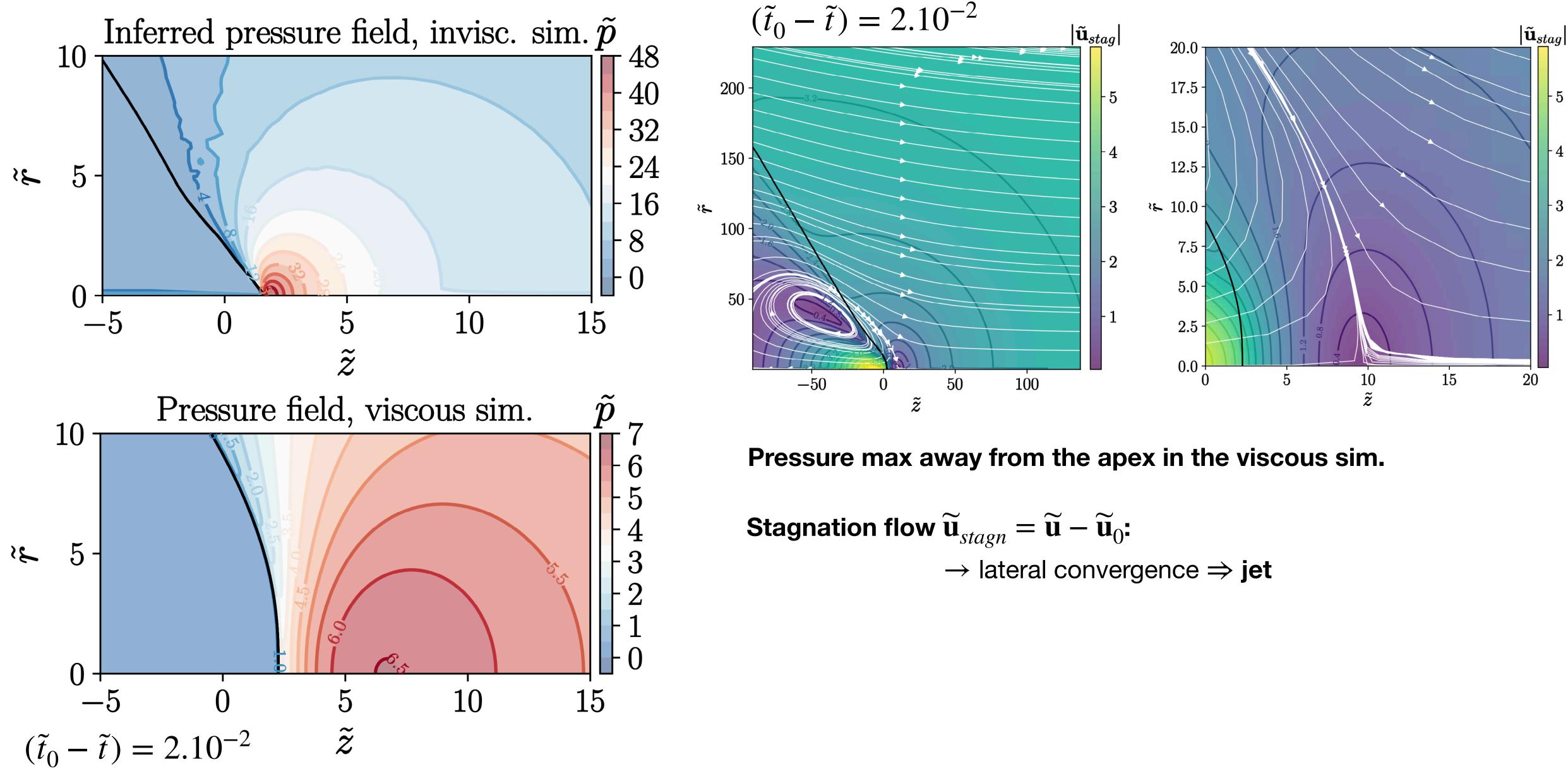
16

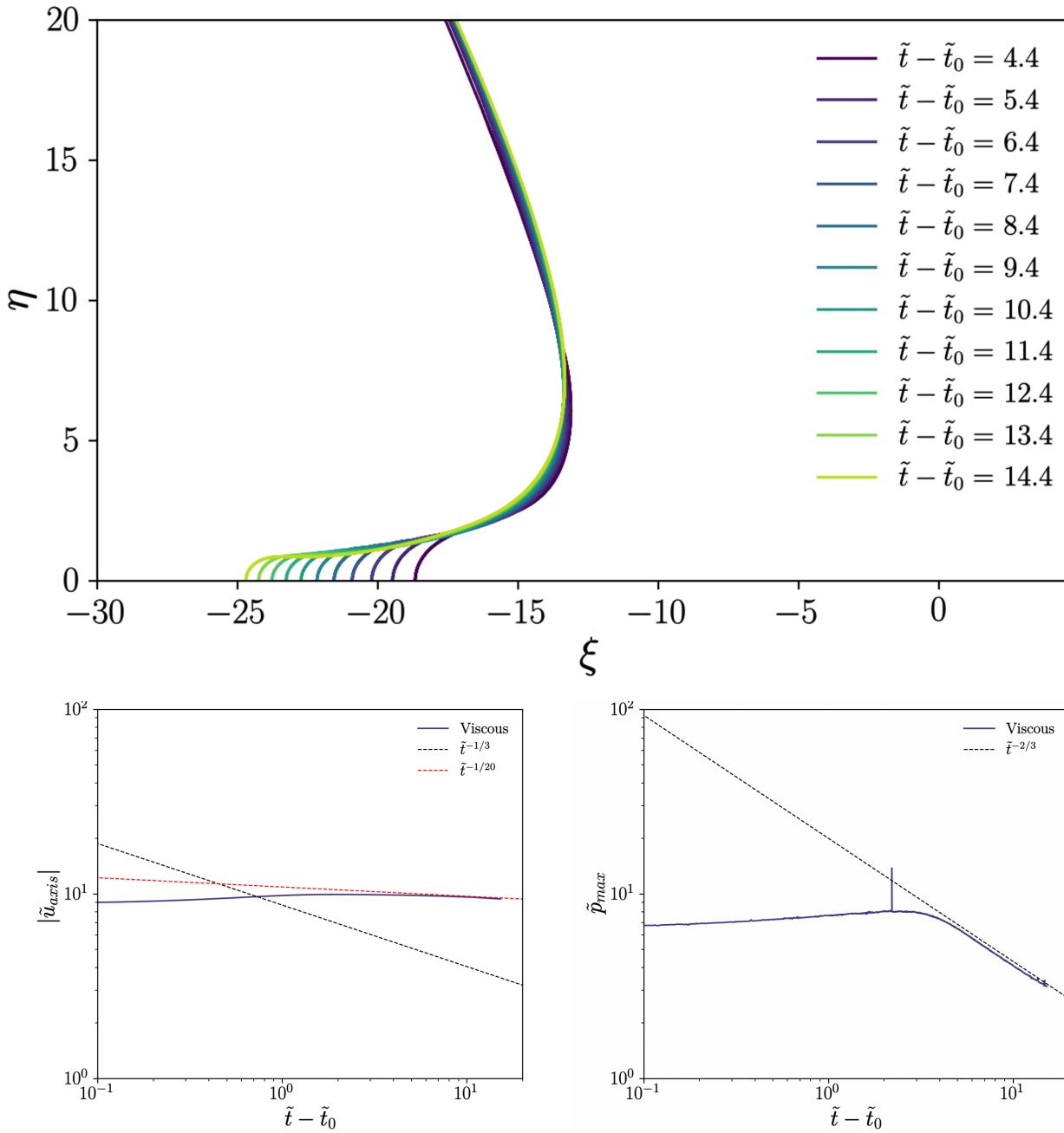
IV - Conical Collapsing Cavities IV.6 - Flow structure in the regularized region



Pressure max away from the apex in the viscous sim.

IV - Conical Collapsing Cavities IV.6 - Flow structure in the regularized region





IV.7 - Post-singular jets

Post-singular jets of non-perturbed collapsed cavities are CAPILLARO-INERTIAL!

18

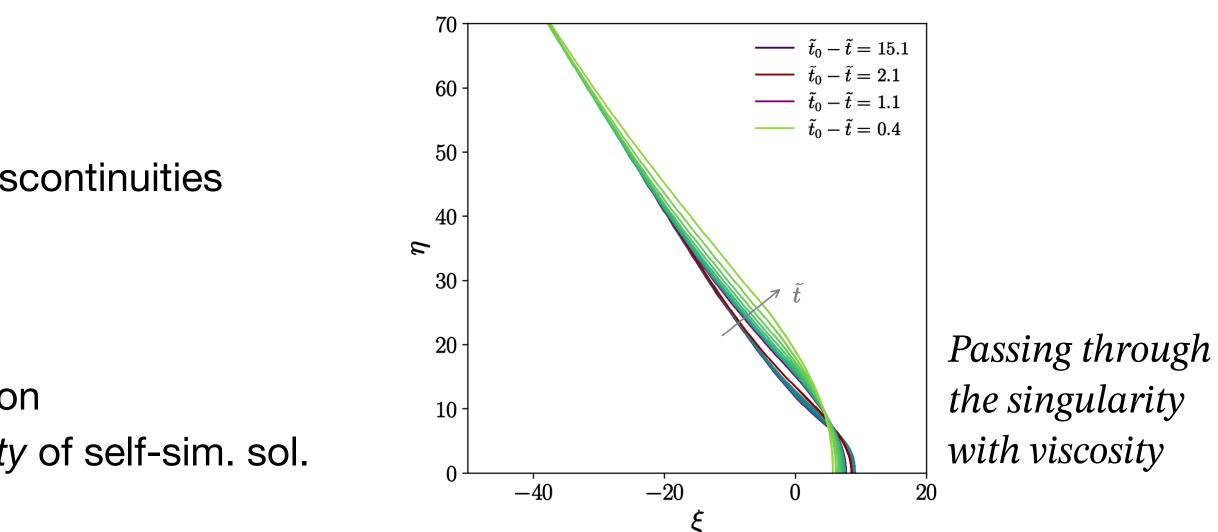
5

Velocity is more or less constant, as observed experimentally

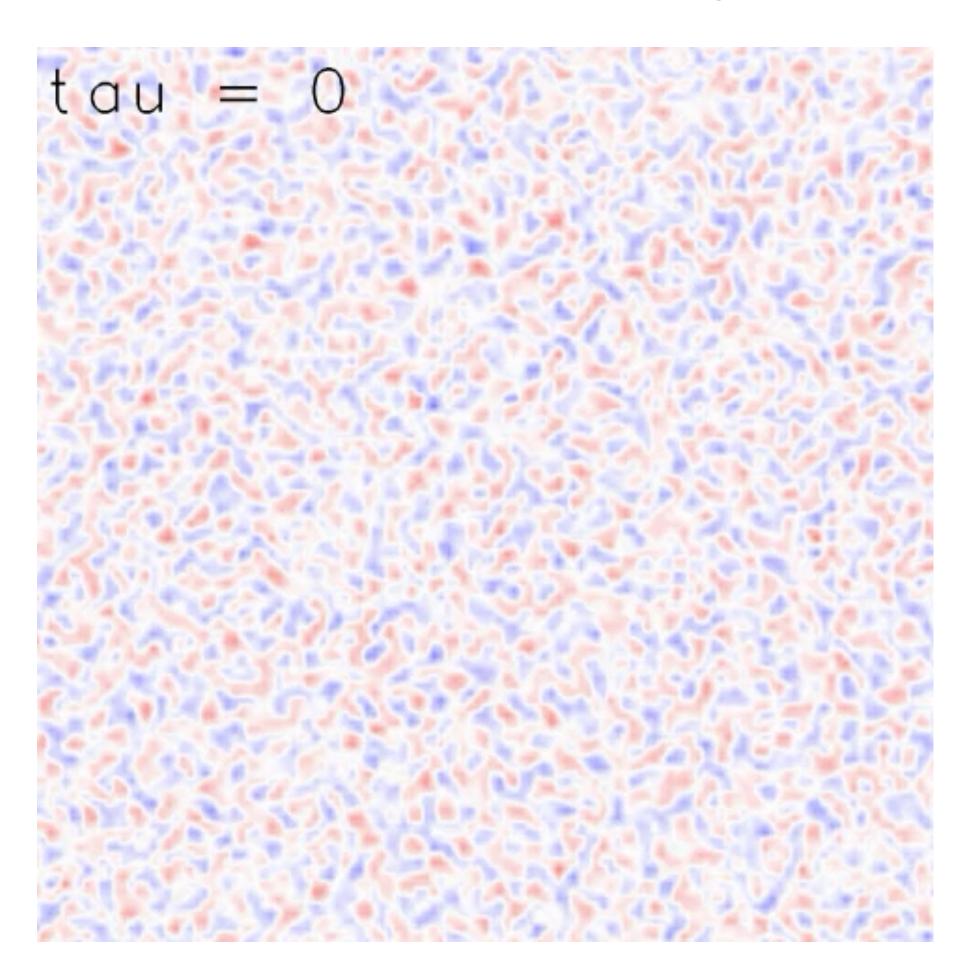
Pressure field follows again a cap.-inert. Reg.

Collapse of a conical cavity:

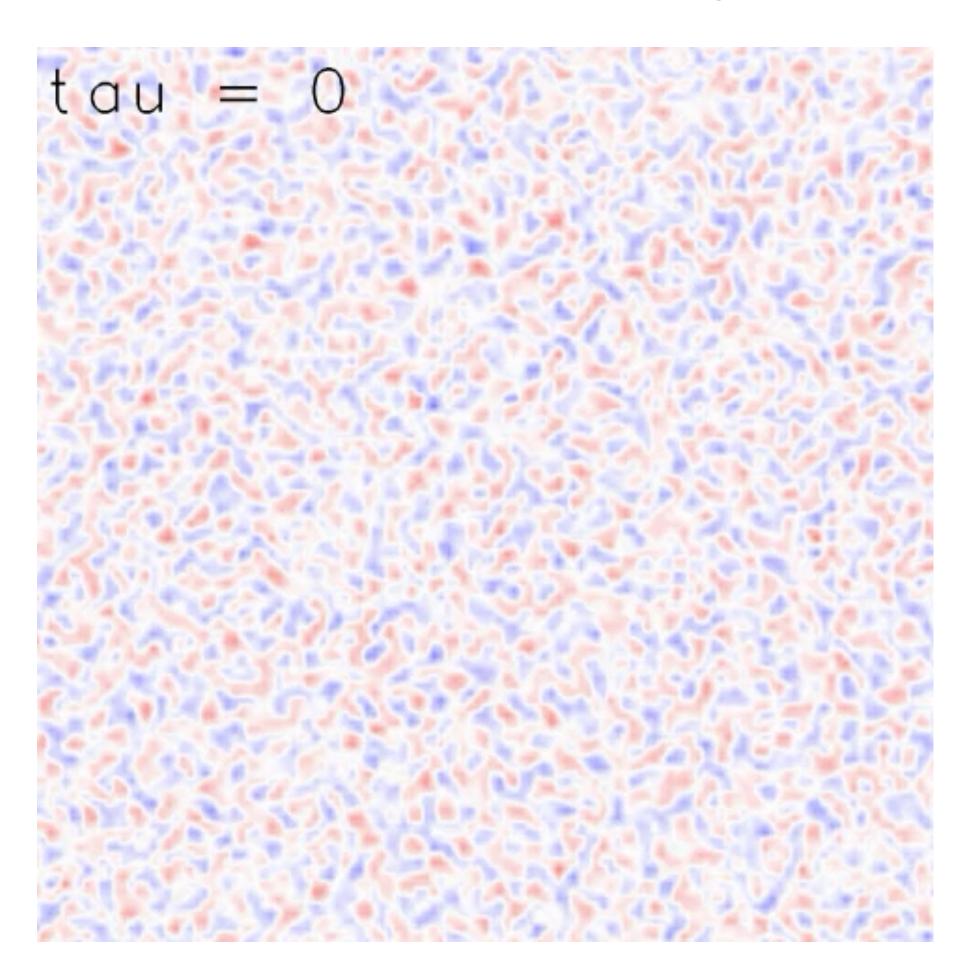
- time reversal of a recoiling cone
- self-similar in $t'^{2/3}$ (capillary-inertial)
- dipolar flow \rightarrow complex far-field tangential velocity discontinuities
- family of self-similar profiles indexed by $(\theta_0, \widetilde{\mu}_0)$
- self-similar jet profiles at high $|\widetilde{\mu}_0|$
- singularity crossed by viscosity effects
- stagnation point as a kinematic process for jet emission
- variation of BCs \rightarrow inertial pinching \rightarrow non-universality of self-sim. sol.



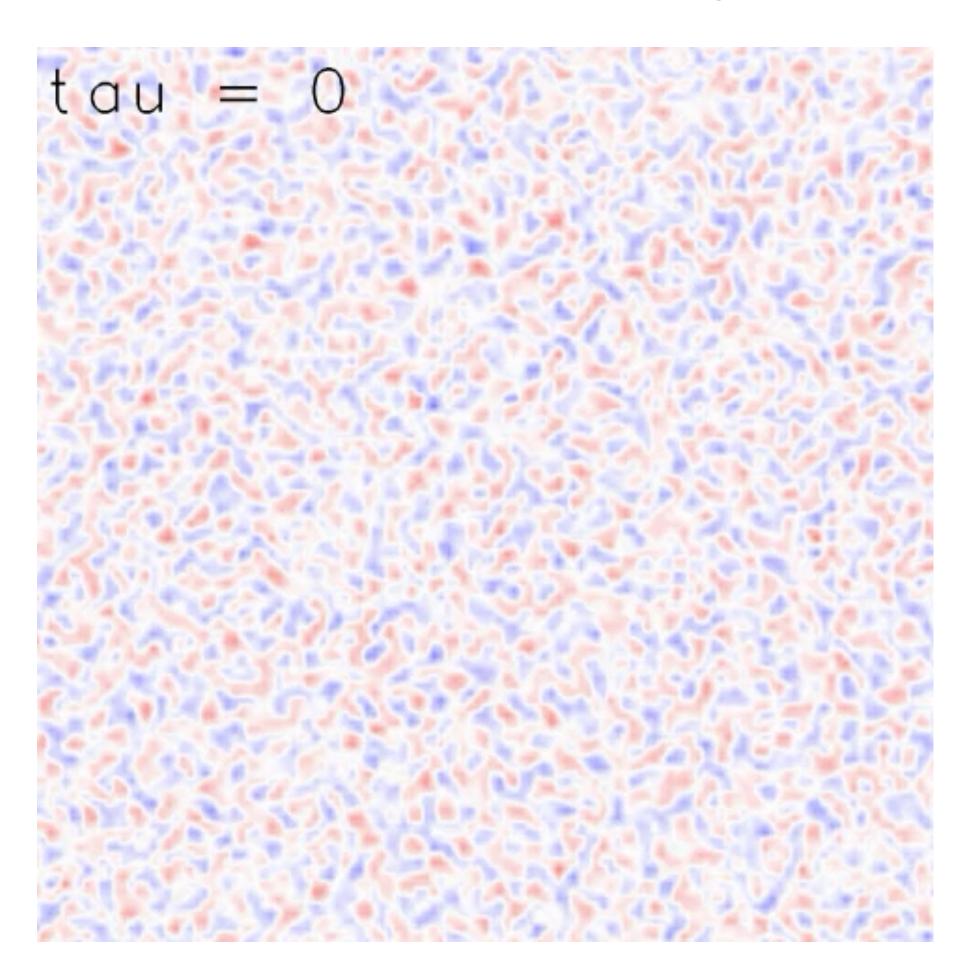
• Dev. of a Self-Similar Solver working on other scale-invariant problems (ONGOING "Huppert's heap")

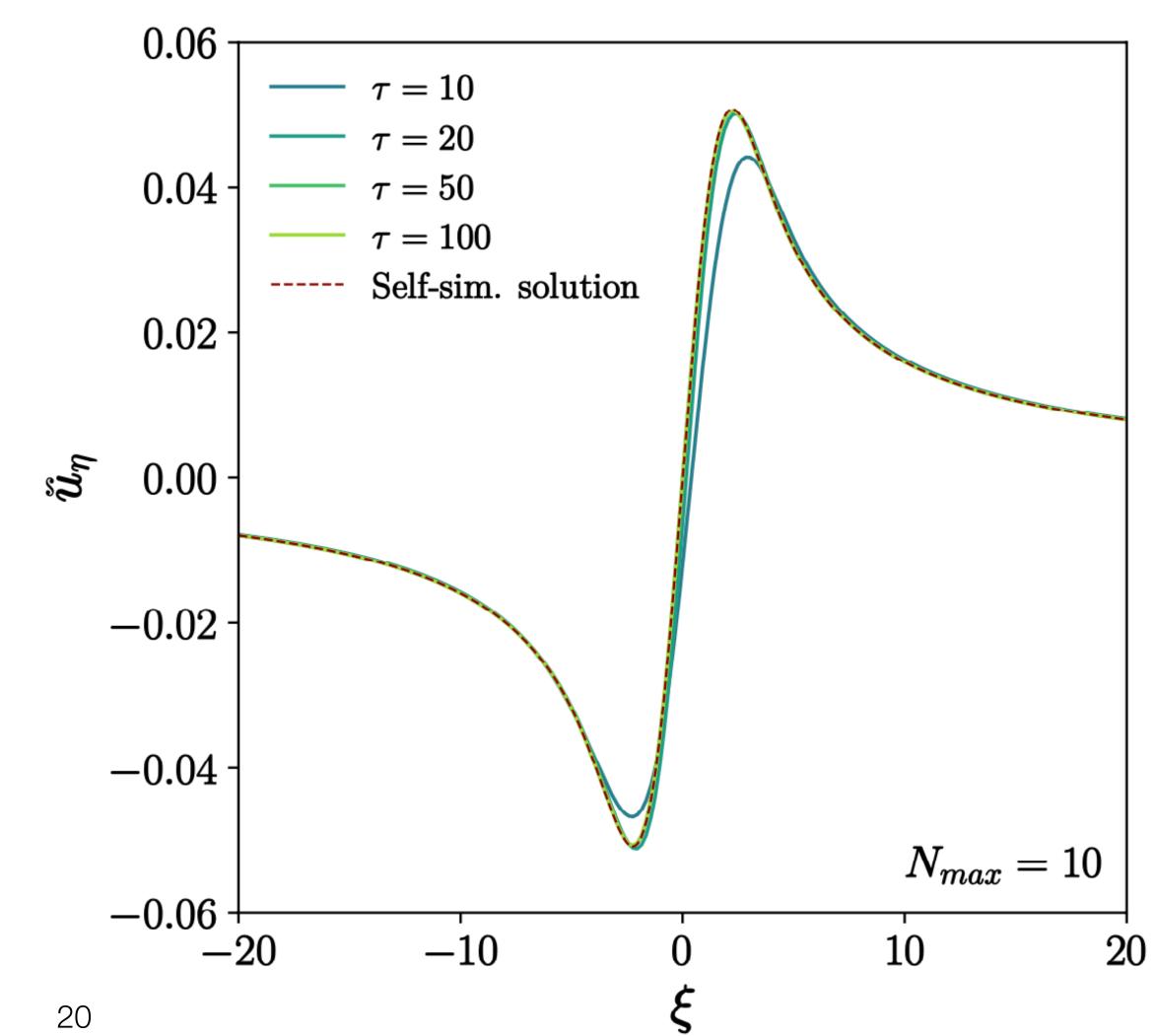


• Dev. of a Self-Similar Solver working on other scale-invariant problems (ONGOING "Huppert's heap")



• Dev. of a Self-Similar Solver working on other scale-invariant problems (ONGOING "Huppert's heap")

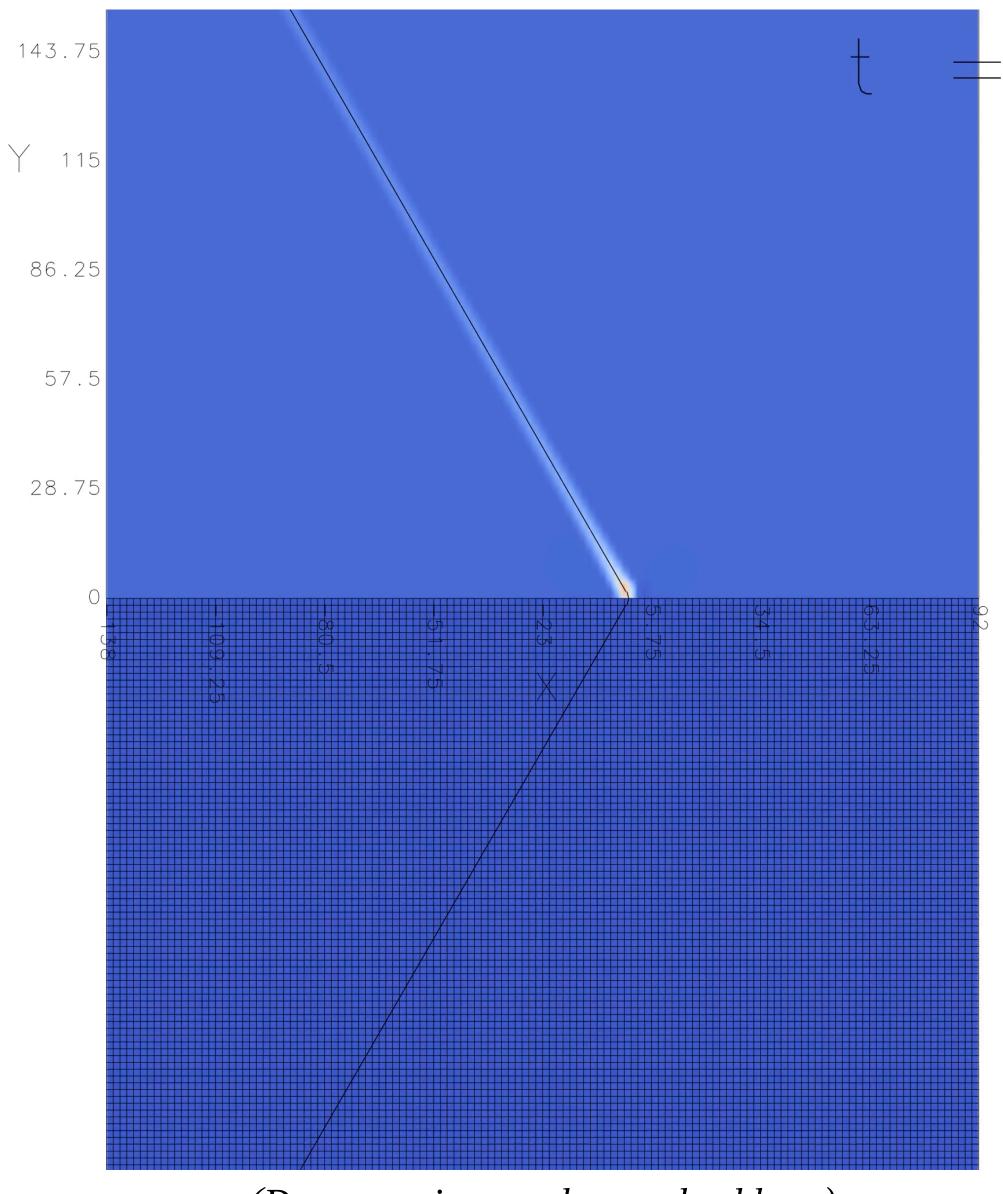




Before: $|\widetilde{\mu}_0| = C^{st}$

Now: *unsteady* dipolar flow $|\widetilde{\mu}_{0}| = \begin{cases} 50, \text{ for } \widetilde{t} < \widetilde{t}_{inv} \\ 25, \text{ for } \widetilde{t} \ge \widetilde{t}_{inv} \end{cases}$

IV.8 - Perturbation of Boundary Conditions

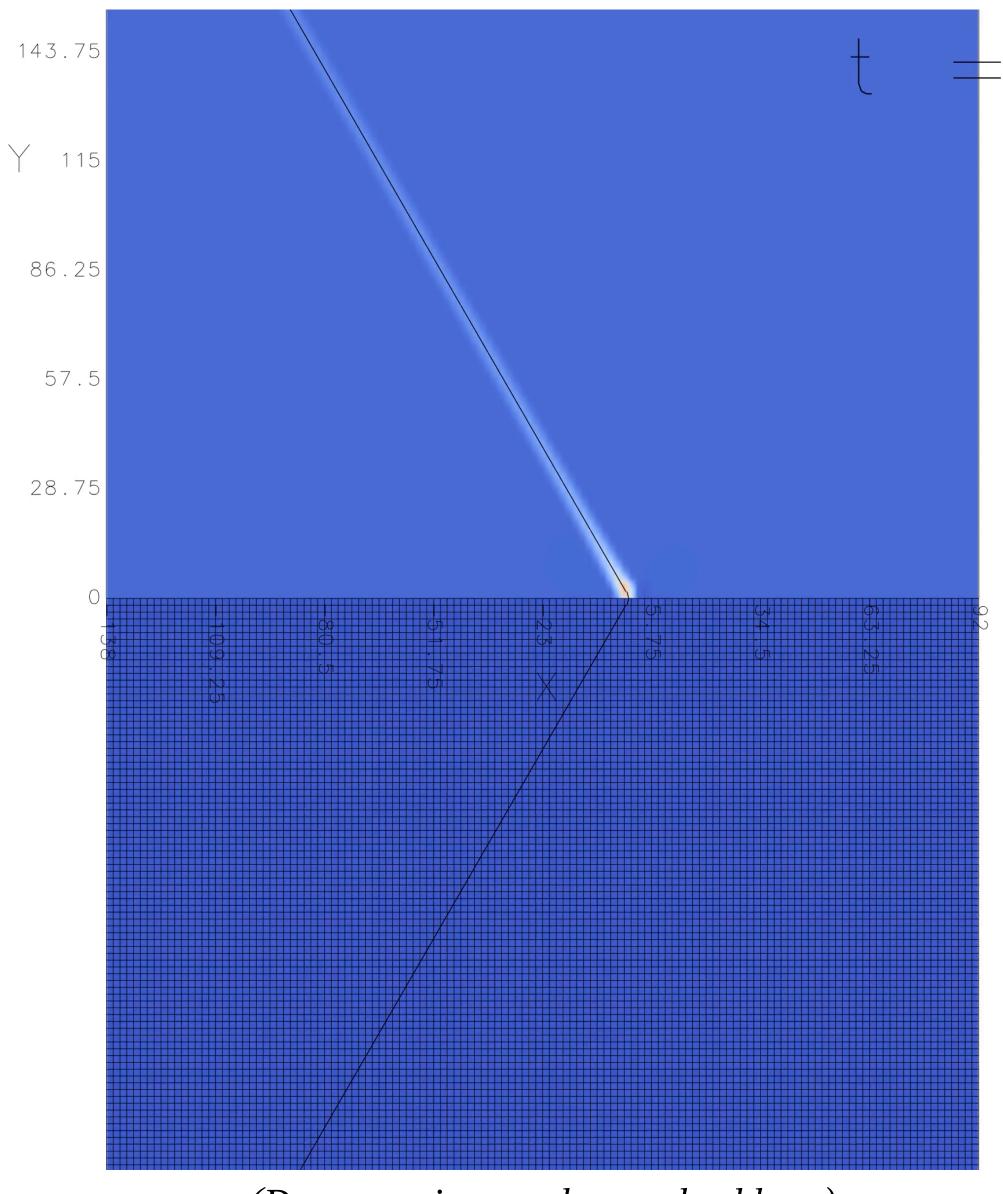


(*Demo version: under resolved here*)

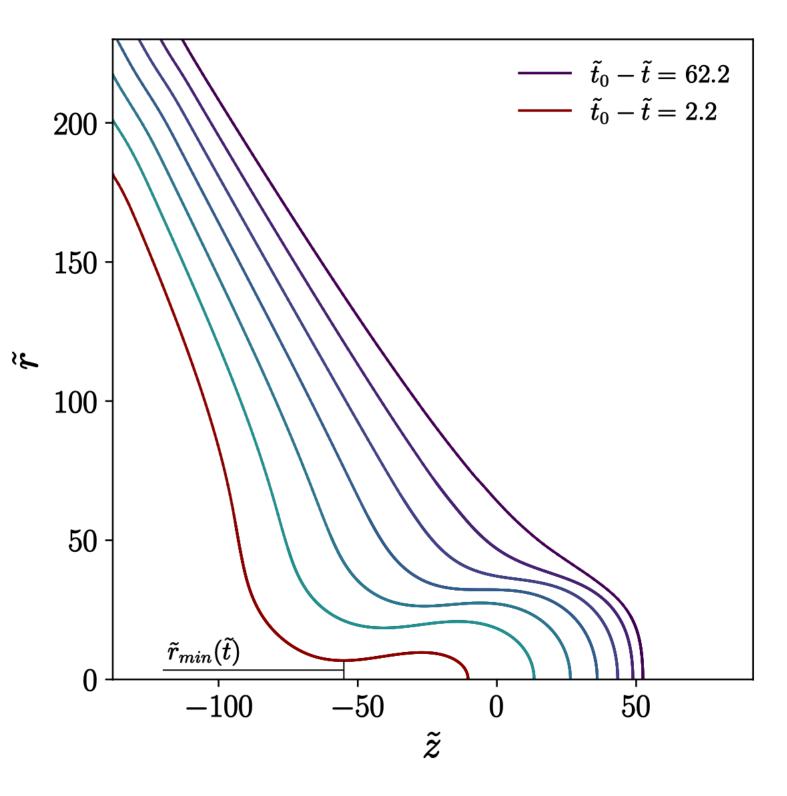
Before: $|\widetilde{\mu}_0| = C^{st}$

Now: *unsteady* dipolar flow $|\widetilde{\mu}_{0}| = \begin{cases} 50, \text{ for } \widetilde{t} < \widetilde{t}_{inv} \\ 25, \text{ for } \widetilde{t} \ge \widetilde{t}_{inv} \end{cases}$

IV.8 - Perturbation of Boundary Conditions

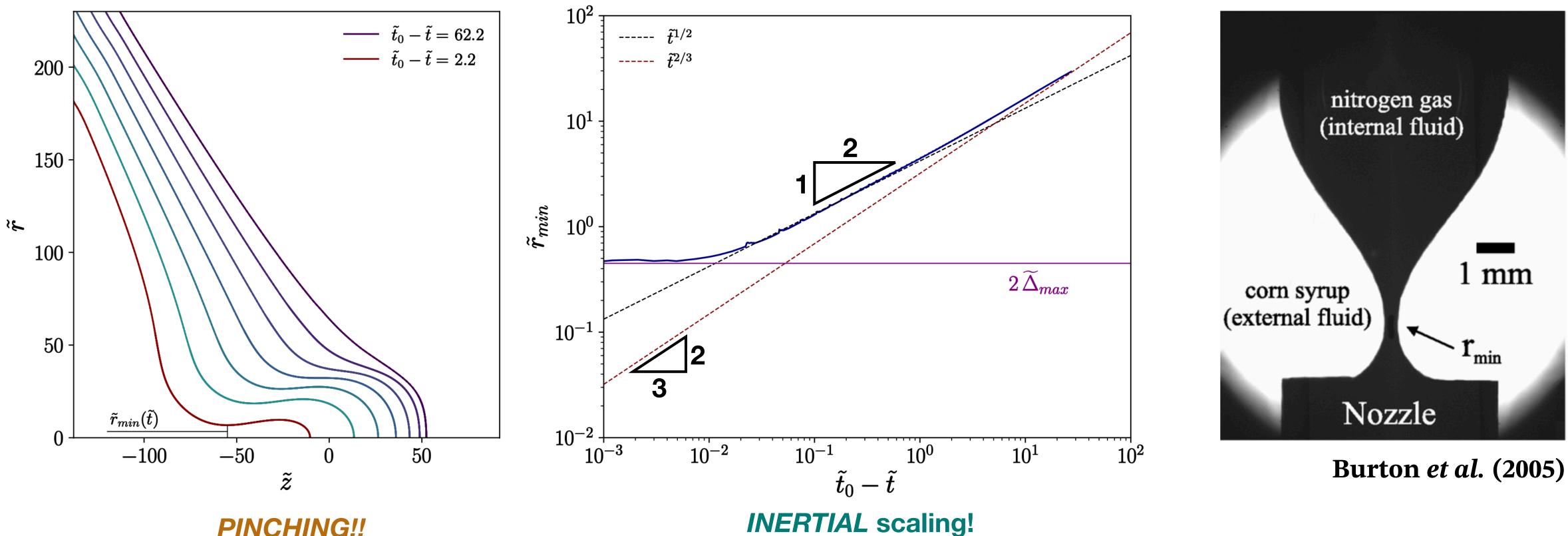


(*Demo version: under resolved here*)



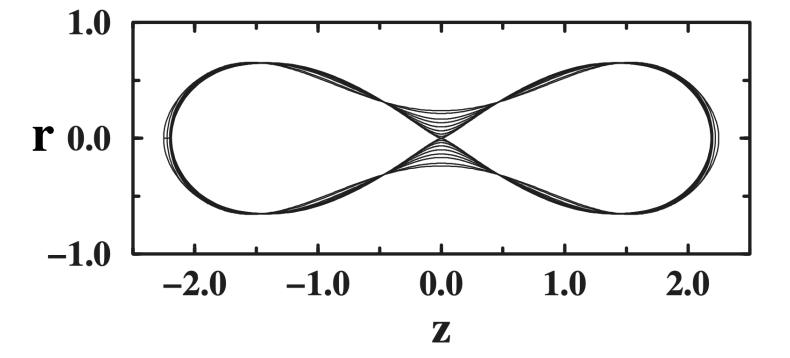
PINCHING!!

<u>New evolution</u> due to different self-similar flows depending on $|\widetilde{\mu}_0|$

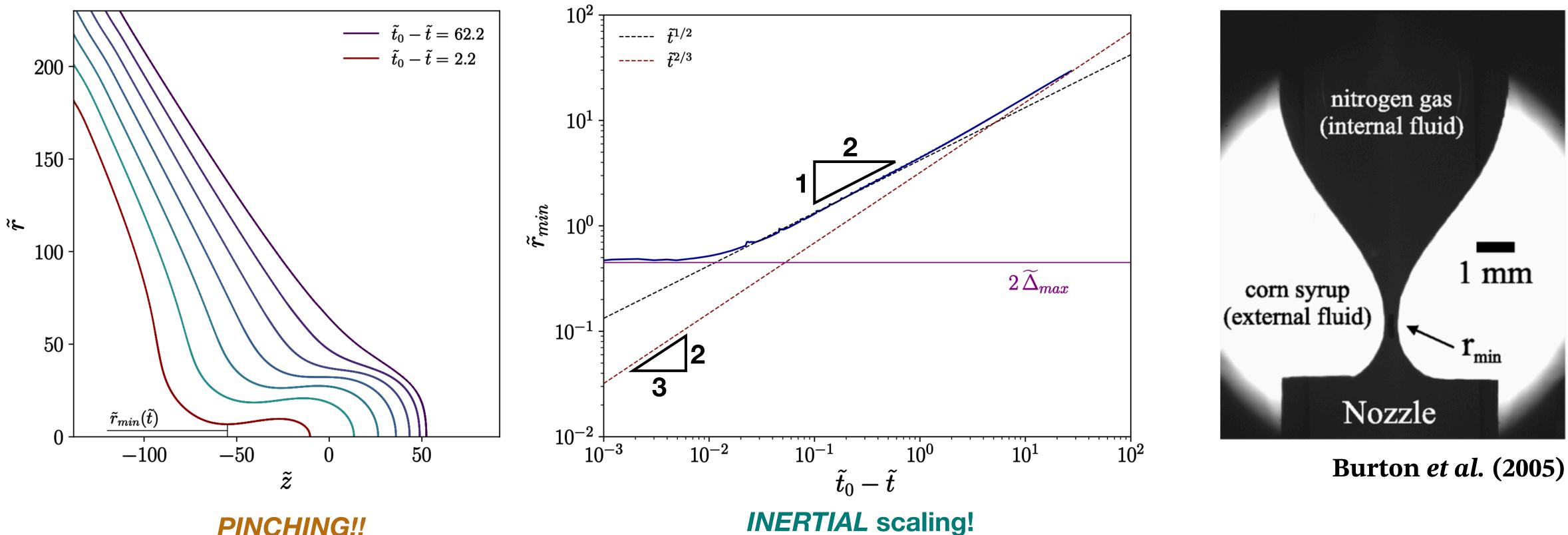


PINCHING!!

<u>New evolution</u> due to different self-similar flows depending on $|\widetilde{\mu}_0|$

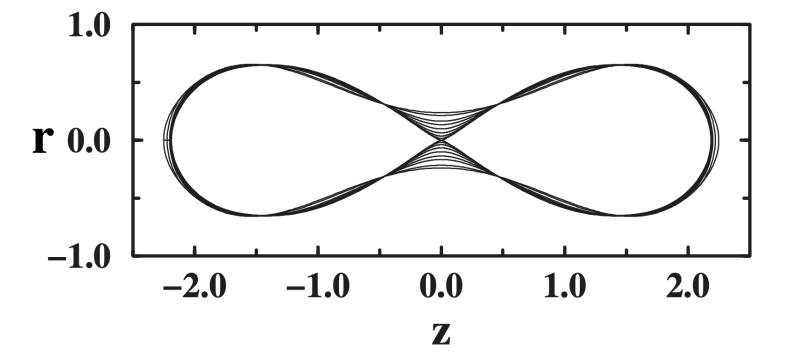


Eggers *et al.* (2007)



PINCHING!!

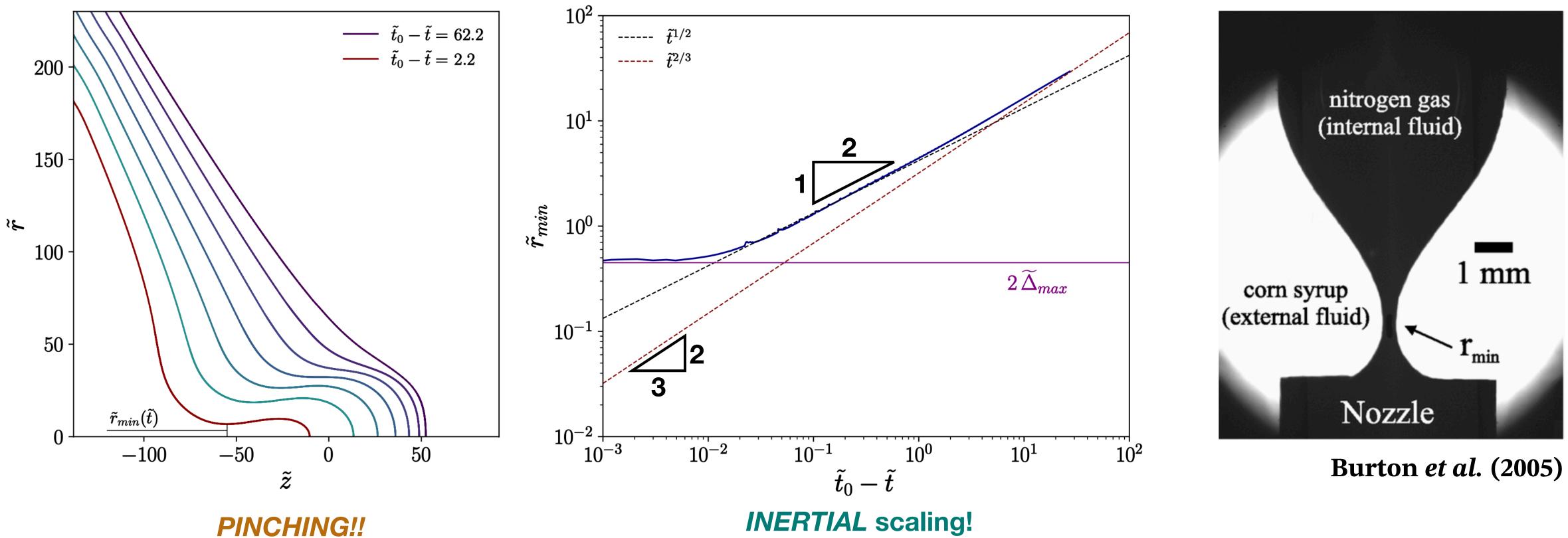
<u>New evolution</u> due to different self-similar flows depending on $|\widetilde{\mu}_0|$



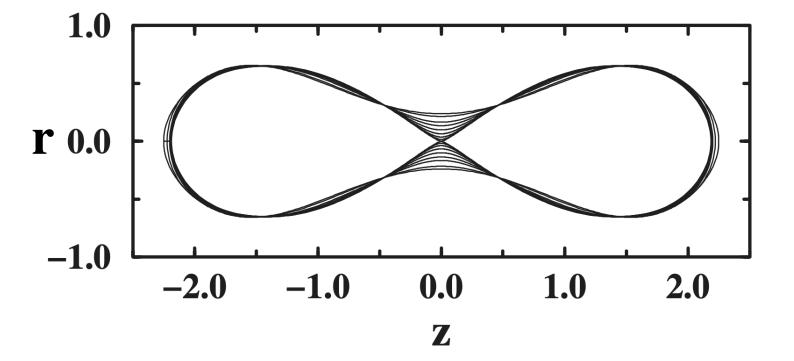
Eggers *et al.* (2007)

BCs perturbation

 \Rightarrow switch in finite-time singularities



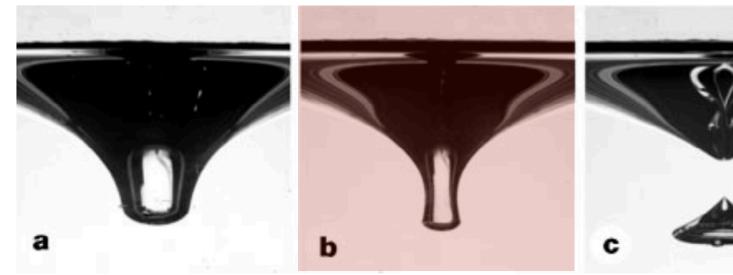
<u>New evolution</u> due to different self-similar flows depending on $|\widetilde{\mu}_0|$



Eggers *et al.* (2007)

BCs perturbation \Rightarrow switch in finite-time singularities

More violent singularity: velocity $\propto \tilde{t}^{'-1/2}$



Zeff *et al.* (2000)

