COLLISION COALESCENCE RATE OF FINITE-SIZE MONODISPERSE DROPLETS IN HOMOGENEOUS ISOTROPIC TURBULENCE

Victor Boniou, Paul Rosener Stéphane Jay, Jean-Lou Pierson, Guillaume Vinay*

BGUM 2025

Motivation: liquid-liquid extraction

Liquid-liquid extraction

- Large range of length scales
 - Large domain: $L \sim 1$ m
 - \circ Turbulent carrier phase: $\eta \sim 10 \ \mu m$
 - ο Polydisperse phase: d_{min} ~100 μm
- Droplets and turbulence highly coupled
 - Small-scale energy injection by droplet motion
 - Fragmentation and coalescence promoted by turbulence
- Multiphysics phenomenon
 - o Mass transfer
 - o Surfactant

Predictive numerical tools for droplet size ?

Industrial scale CFD

Population balance equation: coalescence kernel

Coalescence efficiency $\lambda(\xi,\xi')$

$$\lambda(\xi,\xi') = \exp\left(-\frac{\overline{t}_d}{\overline{t}_c}\right)$$

From Coulaloglou & Tavlarides

Drainage time
$$\bar{t}_d = \frac{C_4 \mu_c \rho_c \epsilon^{2/3} d^{8/3}}{\sigma^2}$$

Contact time $\bar{t}_c = C_5 \frac{d^{2/3}}{\epsilon^{1/3}}$
 $\lambda(d) = \exp\left(-\frac{C_4 \mu_c \rho_c \epsilon d^2}{C_5 \sigma^2}\right)$

Collision kernel $\Gamma(\xi,\xi')$

$$\Gamma(\xi,\xi') = 2\pi d^2 g(d) \langle |w_r| \rangle$$

From Coulaloglou & Tavlarides

Radial distribution function g(d) = 1

Mean relative velocity $\langle |w_r| \rangle = C_3 d^{1/3} \epsilon^{1/3}$

$$\Gamma(d) = \frac{C_3}{d^{7/3}} \epsilon^{1/3}$$

Correct scaling in ϵ and d? C_i could also depend on We, ρ_r , μ_r and Φ !

Scaling analysis

Contact time $\bar{t}_c = C_4 \frac{d^{2/3}}{\epsilon^{1/3}}$ Collision kernel

$$\Gamma = \mathbf{C_3} d^{7/3} \epsilon^{1/3}$$

Augmented physics:

- Added mass effects (inertia of droplets is then included through density ratio ρ_r)
- Surface tension effects (with We scaling in contact time)
- Geometric effects of droplets included (depends on volume fraction Φ)

$$\bar{t}_{c} = \sqrt{\frac{3}{64} \left(\rho_{r} + C_{a}^{d}\right)} W e^{1/2} \frac{d^{2/3}}{\epsilon^{1/3}} \qquad \Gamma = \sqrt{8\pi C_{k}(\epsilon) \frac{\left(\rho_{r} + C_{a}^{\infty}\right)}{\left(\rho_{r} + C_{a}^{d}\right)}} d^{7/3} \epsilon^{1/3}$$

No viscous ratio μ_r effects included in these scaling laws

Numerical set-up: setting the scene

Physical param.

- $\operatorname{Re}_{\lambda} = 48.6 + 80.1$
- $We_c = 0.25$
- $15\eta < d < 25\eta$
- $6\% < \Phi < 18\%$
- $1 < \rho_r < 2$
- $1 < \mu_r < 10$

Basilisk^[1]

- Second-order in space and time finite volume method.
- Octree grids with AMR
- Centered velocity formulation
- VOF-PLIC interface capturing method of Weymouth and Yue
- Curvature from height function
- Well-balanced surface tension
- Linear forcing of turbulence^[2]
- Multi-VOF to prevent coalescence of droplets^[3]

Numerical set-up: flow configuration

Flow configuration

All simulations are run during 25 eddy turnovers with $N_{cells} = 512^3$ and:

- $\operatorname{Re}_{\lambda} = 48.6 + 80.1$
- We = 0.25 + 0.05

Starting from a single-phase HIT simulation at steady-state (after 50 eddy turnovers)

	Re _λ	We	$ ho_r$	μ_r	d/η	Φ/N_d
S1	48.6	0.25	1	1	20	6%/180
S2	48.6	0.25	1	10	20	6%/180
S3	48.6	0.25	2	1	20	6%/180
S4	48.6	0.25	1	1	20	18%/540
S5	48.6	0.25	1	1	15	6%/434
S6	48.6	0.25	1	1	25	6%/94
S6'	80.1	0.25	1	1	25	6%/94
S7	48.6	0.05	1	1	20	18%/540

Collision kernel results

Collision kernel

From study of g(r) and $\langle |w_r(r)| \rangle$:

$$\Gamma = f(\mu_r) \begin{cases} 8\pi C_k \frac{(\rho_r + C_a^{\infty})}{(\rho_r + C_a^d)} d^{7/3} \epsilon^{1/3} \\ \end{array}$$

Conclusions on the model:

- Particle-Resolved DNS predicts higher collision rates which is expected
- Correct scaling for *d*
- Correct behavior for ho_r
- Small increase due to Φ not included
- Huge decrease due to μ_r should be included through a correction $f(\mu_r)$

Boniou, V., Jay, S., Vinay, G., & Pierson, J. L. *Collision statistics of finite-size monodisperse droplets in homogeneous isotropic turbulence*. Journal of Fluid Mechanics (In review 2025).

$$\lambda(\xi,\xi') = \exp\left(-\frac{\overline{t}_d}{\overline{t}_c}\right)$$

 \bar{t}_c : Mean contact time

- Do we retrieve the correct scalings?
- Does it depend on ρ_r ? On μ_r ? On We?
- Is the pdf really exponential?

$$\bar{t}_{c} = \sqrt{\frac{3}{64} (\rho_{r} + C_{a}^{d}) W e^{1/2}} \frac{d^{2/3}}{\epsilon^{1/3}}$$

Contact time pdf

Coalescence efficiency

From Ross work:

$$p(t_c) = \frac{1}{\overline{t_c}} \exp(-\frac{t_c}{\overline{t_c}})$$

Contact time does not follow an exponential distribution in DNS:

$$p(t_c) = \frac{t_c}{\sigma_{tc}^2} \exp(-\frac{t_c^2}{2\sigma_{tc}^2})$$

with $\sigma_{tc} = \sqrt{2/\pi \bar{t}_c}$
$$\lambda(\xi, \xi') = \exp\left(-\frac{1}{\pi} \frac{\bar{t}_d^2}{\bar{t}_c^2}\right)$$

Mean contact time $\overline{t_c}$

Mean contact time

From Chester work (inviscid):

$$\bar{t}_c = \sqrt{\frac{3}{64} \left(\rho_r + C_a^d\right) W e^{1/2} d^{2/3} \epsilon^{1/3}}$$

- Scaling with *d* is verified
- Contact time weakly depends Φ but μ_r should be included
- We and ρ_r might be reevaluated

Not a lot of points in We and ρ_r to confirm scaling!!

An intermediate approach to compute contact time

Model reduction of collision: augmenting Kok system

Model reduction of collision

Collision discribed by an ODE system of 4 variables (x, y, s, θ) such that:

- Collision on a 2D plane (still 3D collisions)
- External flow (Kok)
- Capillary forces (Denkov)
- Droplet inertia

Lagrange's equations on kinetic energy:

$$\frac{d}{dt} \left(\frac{\partial K}{\partial \dot{q}_i} \right) - \frac{\partial K}{\partial q_i} = f_i$$

Model reduction of collision: final system of ODE

Final system of ODE

 $\begin{cases} (A_1 + 2\rho_r - A_2\cos(2\theta))\ddot{x} + 2A_2\sin(2\theta)\dot{\theta}\,\dot{x} - A_2\sin(2\theta)\,\ddot{y} - 2A_2\cos(2\theta)\dot{\theta}\,\dot{y} = 0\\ (A_1 + 2\rho_r + A_2\sin(2\theta))\ddot{x} - 2A_2\cos(2\theta)\dot{\theta}\,\dot{x} + A_2\cos(2\theta)\,\ddot{y} - 2A_2\sin(2\theta)\dot{\theta}\,\dot{y} = 0\\ (2A_3 + \rho_r)\ddot{s} - \rho_rs\dot{\theta}^2 &= -\frac{192}{We} \left(\ell - \frac{8}{\ell^2}\right)/(4 + \ell^3)\\ (2A_4 + \rho_rs^2)\ddot{\theta} + 2\rho_rs\dot{\theta}\dot{s} - 2A_2\sin(2\theta)\,\dot{x}^2 + 2A_2\sin(2\theta)\,\dot{y}^2 - 2\dot{x}\dot{y}\cos(2\theta) = 0 \end{cases}$

With ρ_r and We parameters of the system

Model reduction of collision: contact time

Contact time from the model

1. Initial conditions of the collision:

$$\mathbf{q}_{0} = \left\{ \frac{d}{2}, 0, d, 0 \right\} \quad \dot{\mathbf{q}}_{0} = \left\{ \frac{w_{r,0}}{2}, \frac{w_{\theta,0}}{2}, w_{r,0}, \frac{w_{\theta,0}}{d} \right\}$$
$$w_{r,0} = -\sqrt{8\pi C_{k}} \frac{(\rho_{r} + C_{a}^{\infty})}{(\rho_{r} + C_{a}^{d})} \quad w_{\theta,0} = -w_{r,0} \tan(\alpha_{0})$$

- 2. Choice of ρ_r and We
- 3. ODE solved until r > d to get contact time from the resolved system

t = 0.00

Model reduction of collision: parameter study

16

Model reduction of collision: parameter study

Internship P.Rosener: model reduction of collisions

Scalings of Chester are not retreived for We around 1 for not head-on collisions!

 $\lambda(\xi,\xi') = \exp\left(-\frac{t_d}{\bar{t}_c}\right)$ \overline{t}_{d} : Mean drainage time Here we just consider that the pdf ullet $p(t_d)$ is a Dirac to $\bar{t}_d = \frac{\mu_c \rho_c \epsilon^{2/3} d^{8/3}}{\sigma^2}$ See presentation of Paul-Peter tomorrow! (With Multilayer solver!!)

Conclusion and perspectives

Conclusions

DNS to study the collision statistics of population of droplets using multi-VOF interface capturing.

Data thoroughlty validated on collision rate and leading to a new formula for the coalescence rate.

New reduced model for binary collisions useful to study the scaling law and to compare with DNS

Try it yourself! http://basilisk.fr/sandbox/boniouv