How to model two phase flows on arbitrary solid surfaces? (with Basilisk)

Mathilde Tavares ${ }^{1}$

Christophe JOSSERAND ${ }^{1}$, Alexandre LIMARE ${ }^{2}$, Stéphane POPINET ${ }^{3}$, José Maria HERRERA LOPEZ ${ }^{4}$
${ }^{1}$ LadHyX, Ecole polytechnique, France
${ }^{2}$ ArianeGroup, France
${ }^{3}$ Institut Jean Le Rond d'Alembert, Sorbonne University, France
${ }^{4}$ Séville University, Spain

Multiphase flows without phase change

(a) Droplet impact on a leaf [Credit: Valentin Laplaud(LadHyx)].

(b) Droplet hanging on fiber [Lorenceau et al, JCI, (279) 2004].

Motivations

Model properly the interaction between the gas, the liquid and the solid

Multiphase flows with phase change

Figure: Droplet solidification [Credit: Thievenaz and al GFM2016, Monier and al]

Motivations

Model properly the interaction between the gas, the liquid and the solid

Interactions between a fluid and an arbitrary shape solid

Figure: Contact angle θ and interfacial tensions σ, between solid, liquid and gas phases.

Problem

Model properly the interaction between the gas, the liquid and the solid

Interactions between a fluid and an arbitrary shape solid

Figure: Contact angle θ and interfacial tensions σ, between solid, liquid and gas phases (Chaudary and al Exp therm Fluid Sci 2014, Vu and al IJMF 2015, Zhang and al IJHMT 2018, Tembely and al JFM 2019, contact.h).

Problem

Model properly the interaction between the gas, the liquid and the solid

Interactions between a fluid and an arbitrary shape solid

Figure: Contact angle θ and interfacial tensions σ, between solid, liquid and gas phases (Liu and al JCP 2015, Patel and al Chem E. Sci 2017, Gohl and al IJMF 2018, Lyu and al JCP 2021).

Problem

Model properly the interaction between the gas, the liquid and the solid

Methodology

Goal

\Rightarrow Implement a numerical method able to model multiphase flows interacting with arbitrary solids, thus taking into account the contact angle between the solid and the liquid-gas (triple point)

Methodology

Goal

\Rightarrow Implement a numerical method able to model multiphase flows interacting with arbitrary solids, thus taking into account the contact angle between the solid and the liquid-gas (triple point)

Ongoing developments

\Rightarrow Hybrid approach with Volume Of Fluid (VOF method) and the embedded boundary method
\Rightarrow Setting of the proper boundary conditions at the gas, liquid and solid intersection

Which solver?

\Rightarrow Basilisk (Free software Program, PDE equations on adaptive Cartesian meshes (AMR))

Outline

(2) Coupling between Volume Of Fluid (VOF) and embedded boundary method

- Basilisk solver
- Contact angle calculation description
(3) Results
- Spreading droplet on plane solid surfaces
- 3D equilibrium shape on horizontal embedded solid for 30° and 150° contact angles

A three phases system with Basilisk solver (http://www.basilisk.fr)

Figure: Three phases flow in a square domain

A three phases system with Basilisk solver (http://www.basilisk.fr)

Liquid/gas phases

Navier-Stokes equations with the Volume of Fluid method to account for the liquid/gas interface

Figure: Two-phases flow discretized on a Cartesian grid

A three phases system with Basilisk solver (http://www.basilisk.fr)

Figure: Two-phases flow discretized on a Cartesian grid

Incompressible Navier-Stokes equations for multiphase flows (One fluid model)

$$
\begin{aligned}
& \bar{\nabla} \cdot \bar{u}=0 \\
& \frac{\partial \rho \bar{u}}{\partial t}+\bar{\nabla} \cdot(\rho \bar{u} \otimes \bar{u})=\bar{\nabla} \cdot \overline{\overline{\mathcal{T}}}+\rho \bar{g}+\underbrace{\sigma \kappa \bar{n} \delta_{s}}_{\bar{F}_{\sigma}} \\
& \frac{\partial \mathbf{F}}{\partial t}+\bar{u} \cdot \bar{\nabla} \mathbf{F}=0 \\
& \mathbf{F}=0 \text { in } \mathrm{G} \text { and } \quad \mathbf{F}=1 \text { in L and } \mathrm{S} \\
& \overline{\overline{\mathcal{T}}} \equiv-p \overline{\overline{\mathcal{I}}}+\mu\left(\bar{\nabla} \bar{u}+\bar{\nabla} \bar{u}^{T}\right) \text { the stress tensor. }
\end{aligned}
$$

Physical properties

$$
\begin{aligned}
\rho & =\mathbf{F} \rho_{L}+(1-\mathbf{F}) \rho_{G} \\
\mu & =\mathbf{F} \mu_{L}+(1-\mathbf{F}) \mu_{G}
\end{aligned}
$$

A three phases system with Basilisk solver(http://www.basilisk.fr)

Figure: Two-phases flow discretized on a Cartesian grid

Incompressible Navier-Stokes equations

- Time staggered approximate projection method
- BCG second order scheme to discretize the advection term
- Fully implicit scheme for the viscous term
- Collocated grid for spatial discretization based on AMR

Volume of Fluid method

- VOF with a geometrical reconstruction method (PLIC) for sharp interface
- Split advection method [Weymouth and Yue]

Surface tension

- CSF model [Brackbill and al] with the well balanced surface tension calculation
- Generalized height function method for the curvature

A three phases system with Basilisk solver (http://www.basilisk.fr)

Figure: Three phases flow discretized on a Cartesian grid

A three phases system with Basilisk solver (http://www.basilisk.fr)

Solid phase

Embedded boundary method to account for the solid in the whole problem

Figure: Immersed boundary flow discretized on a Cartesian grid

Embedded boundary method embed. $h_{\text {[Johansen and Colella, JCP, 1998] }}$

Figure: Fluid cut-cell

Embedded fractions

$V_{F}=\mathbf{C} \Delta^{D}$ with $D=$ dimension
$A_{F}^{d}=f_{F}^{d} \Delta^{D-1}$ with $d=l, b, r, t$

Figure: Dirichlet gradient calculation $\left.\bar{\nabla} a\right|_{\Gamma_{S}}$ or $\left(\bar{\nabla} a \cdot \bar{n}_{\Gamma_{S}}\right)$
$\left.\bar{\nabla} a\right|_{\Gamma_{S}}=\frac{1}{d_{2}-d_{1}}\left[\frac{d_{2}}{d_{1}}\left(a_{\Gamma_{S}}-a_{1}{ }^{I_{1}}\right)-\frac{d_{1}}{d_{2}}\left(a_{\Gamma_{S}}-a_{1}^{I_{2}}\right)\right]$

Embedded boundary method embed. $h_{\text {[Johansen and Colella, JCP, 1998] }}$

Figure: Dirichlet gradient calculation $\left.\bar{\nabla} a\right|_{\Gamma_{S}}$ or $\left(\bar{\nabla} a \cdot \bar{n}_{\Gamma_{S}}\right)$
$\left.\bar{\nabla} a\right|_{\Gamma_{S}}=\frac{1}{d_{2}-d_{1}}\left[\frac{d_{2}}{d_{1}}\left(a_{\Gamma_{S}}-a_{1}^{I_{1}}\right)-\frac{d_{1}}{d_{2}}\left(a_{\Gamma_{S}}-a_{1}{ }^{I_{2}}\right)\right]$

Discrete operator in a cut cell

$$
\bar{\nabla} \cdot \bar{\Phi} \approx \frac{1}{V_{F}} \int_{\mathcal{V}} \bar{\nabla} \cdot \bar{\Phi} d V_{F}=\frac{1}{V_{F}} \int_{\delta \mathcal{V}} \bar{\Phi} \cdot \bar{n}_{d} d A=\left(\sum_{d=l, b, r, t} f_{F}^{d} \overline{\bar{\Phi}} \cdot \bar{n}_{d}\right)+\bar{\Phi}_{\Gamma_{S}} \cdot \bar{n}_{\Gamma_{S}}
$$

A three phases system with Basilisk solver(http://www.basilisk.fr)

Figure: Three phases flow discretized on a Cartesian grid

Liquid/gas phases

Navier-Stokes equations with the Volume of Fluid method to account for the liquid/gas interface

Solid phase

Embedded boundary method to account for the solid

Figure: Geometrical flux estimation in a cut-cell

A three phases system with Basilisk solver(http://www.basilisk.fr)

Figure: Three phases flow discretized on a Cartesian grid

Liquid/gas phases

Navier-Stokes equations with the Volume of Fluid method to account for the liquid/gas interface

Solid phase

Embedded boundary method to account for the solid

A three phases system with Basilisk solver(http://www.basilisk.fr)

Figure: Three phases flow discretized on a Cartesian grid

Liquid/gas phases

Navier-Stokes equations with the Volume of Fluid method to account for the liquid/gas interface

Solid phase

Embedded boundary method to account for the solid

Contact angle description

Specific algorithm developed to account for the triple point at the solid/liquid/gas intersection

Algorithm description

We assume a piecewise linear reconstruction for both liquid and solid interface Γ_{S} and Γ_{L}

$$
\left(\bar{n}_{\Gamma_{L, S}}\right) \cdot \bar{x}=\alpha_{L, S} \text { with } \alpha_{L, S} \text { the intercept }
$$

```
Algorithm 1
for all cells
    if (0<C<1&& 0<F<1) then // potential triple phase cell
    \overline{n}
    \alpha bound}=\mathcal{F}(F,\mp@subsup{\overline{n}}{\mathrm{ bound}}{\mathrm{ ( ) //intercept at the triple point cell}
    end if
end for
```

At every timestep, F is modified in the ghost-cells to account for θ_{S}

```
Algorithm 2
for all cells
    if ( \(\mathrm{C}==0\) ) then //in the ghost cells
    \(w_{\text {cell }}=0, w_{\text {total }}=0 / /\) weight for volume fraction reconstruction
    for all neighbors within 2 cells
            if \((0<C<1 \& \& 0<F<1)\) then //potential triple phase cell
            \(w_{\text {cell }}=C \times(1 .-C) \times F \times(1 .-F)\)
            \(w_{\text {total }}=\sum w_{\text {cell }}\)
            \(F_{G}=w_{\text {cell }} \times f\left(\bar{n}_{\Gamma_{F}}, \alpha_{\text {bound }}\right)\)
            end if
    end for
    \(F_{G}=F_{G} / w_{\text {total }}\)
    end if
end for
```


Algorithm description

Figure: Algorithm illustration

Algorithm description

Figure: Algorithm illustration

Algorithm description

Figure: Algorithm illustration

Algorithm description

Figure: Liquid (red) initially at rest in a slot geometry (gray)
How to impose the contact angle between the liquid, the gas and the embedded solid at the triple point?

Algorithm description

Outline

(1) Motivations

(2) Coupling between Volume Of Fluid (VOF) and embedded boundary method

- Basilisk solver
- Contact angle calculation description
(3) Results
- Spreading droplet on plane solid surfaces
- 3D equilibrium shape on horizontal embedded solid for 30° and 150° contact angles

Equilibrium shape of a droplet on an horizontal embedded solid

Figure: Schematic representation of the initial and equilibrium shapes of the a droplet on a flat surface with static contact angle θ_{s}

Equilibrium shapes on horizontal embed solid for 15° and 165° contact angles

(a) Equilibrium shape for 15°

(b) Equilibrium shape for 165°

At equilibrium the radius of the circle R_{f}, the radius of spreading r_{f}, the height of the drop h_{f} are given by:

$$
h_{f}=R_{f}\left(1-\cos \theta_{s}\right), \quad r_{f}=R_{f} \sin \theta_{s}, \quad R_{f}=R_{0} \sqrt{\frac{\pi}{2\left(\theta_{s}-\sin \theta_{s} \cos \theta_{s}\right)}}
$$

Equilibrium shapes on horizontal embedded solid for 15° and 165°

 contact angles $E=0$
(a) Numerical equilibrium droplet shapes (-) against (b) Dimensionless droplet height h_{f} / R_{0} and radius the analytical results (.), $R_{0}=32 \Delta$ r_{f} / R_{0} evolution, $R_{0}=32 \Delta$

Equilibrium shapes on arbitrary embedded solids for 60° contact angle

(a) Equilibrium shape for 60° (cylinder)

(b) Equilibrium shape for 120° (sinusoidal)

3 D equilibrium shape

(a) Equilibrium shape for 60°

(b) Comparison of R / R_{0} to the analytical expression, with $R_{0}=\left(\frac{3 V}{4 \pi}\right)^{1 / 3}, R_{0 \text { min }}=32 \Delta$

The volume of a spherical cap of radius R and (contact) angle θ :

$$
V=\frac{\pi}{3} R^{3}(2+\cos \theta)(1-\cos \theta)^{2}
$$

Remarks

Limitations

- We observe a pinning of the contact line in some configurations
- Mass conservation in mixed cells

Figure: Numerical equilibrium droplet radius against the analytical results

Solutions

- Change the orientation of the solid alignment with the mesh
- Introduce Navier boundary condition on the solid to enforce the contact line motion $\lambda \frac{\partial \bar{u}_{\tau}}{\partial n}+\left(\bar{u}_{\tau}-\bar{U}_{s, \tau}\right)=0$

Conclusion

- Coupling of VOF/embedded boundary method by imposing a contact angle at the frontier between the liquid, the gas and the solid
- Validation on 2D and 3D analitycal test cases (sessile) and other solid shapes

```
\Downarrow
```


Ongoing works

- Validation with experimental problems (droplet flow on a fiber)
- Use this model to deal with liquid-solid phase change problems

Why?

Tavares and al : A coupling VOF/embedded boundary method to model two phase flows on arbitrary solid surfaces to be submitted

Droplet impact on a leaf cup

Figure: Droplet impact on a leaf

Liquid-solid phase change simulations (solidification or melting)

(a) Ice formation on wing plane

(b) Ice accretion on bridge cable

Problem

Model the phase change properly while accounting for the gas, liquid and solid interactions

A solidification test example

Figure: Water droplet solidification with $\theta_{s}=20^{\circ}$ and $\theta_{s}=60^{\circ}$

Apologies

Figure: sandbox:tavares

Apologies

Figure: sandbox:ghigo

Thank you for your attention

mathilde.tavares@ladhyx.polytechnique.fr
Ecole polytechnique
Laboratoire LadHyX, UMR 7646 CNRS

