

Path and wake of a deformable bubble rising close to a vertical wall

Pengyu Shi¹, Jie Zhang², Jacques Magnaudet¹

1: Institut de Mécanique des Fluides de Toulouse (IMFT), Toulouse, France 2: Xi'an Jiaotong University, Xi'an, PR China

Motivation

Figure reproduced from Takemura & Magnaudet (2003, JFM)

Large wall distance: (Van Wijngaarden 1976, JFM)

Small wall distance: (Magnaudet et al. 2003, JFM)

This suggests the existence of an *equilibrium wall-normal distance*, But in real life bubble keeps bouncing...

Aim of our work:

to understand the mechanism responsible for near-wall bouncing, based CFD results of 3D fully-resolved simulations

Statement of the problem

$$Ga = \frac{R\sqrt{Rg}}{\nu} \qquad Bo = \frac{\rho g R^2}{\gamma} \qquad \overline{x_0} = \frac{x_0}{R}$$
$$\rho_g / \rho = 10^{-3}, \qquad \mu_g / \mu = 10^{-2}$$

In the computations discussed later, $\overline{x_0} = 2$

Numerical approach

Basilisk code (Popinet 2009, 2015)

- Gas-liquid interface tracked by VOF approach
- Adaptive mesh refinement:
- Refinement based on f & u, $\xi_f = 10^{-3}$, $\xi_u = 10^{-2}$
- Grid size: $\Delta_{max} \approx 2R$

 $\Delta_{\min} = 1/68R$ if $\delta > 0.1R$ 1/136R if $\delta \le 0.1R$

Bubble trajectories

Solid symbols: data from present work ○: Takemura & Magnaudet (2003) ☆: de Vries (2001, phd dissertation) Some trajectories at Ga = 20

Increasing bubble deformation

Why do bubbles bounce at low-to-moderate Bo?

Solid symbols: data from present work ○: Takemura & Magnaudet (2003) ☆: de Vries (2001, phd dissertation) In unbounded flow, path instability is usually triggered by wake instability

This is the case for, e.g., Ga = 30, Bo = 1

Wall specifies the symmetric plane, but has nothing to do with the bouncing

Isosurface of streamwise vorticity in the half space z < 0

Mismatch with Experiment

Case details: Ga = 21.9, Bo = 0.073 (Takemura and Magnaudet 2003) Numerical settings: Δ_{min} = 68/R, ξ_u = 0.01, T_{ϵ} = 1e-4, *CFL* = 0.5

Bouncing motion: $x(t) = R[\varepsilon_0 + \varepsilon \sin(\omega t)]$

Experiment: $\epsilon_0 = 1.29$, $\epsilon = 0.256$, $\omega R^2/\nu = 8.3$ Simulation: $\epsilon_0 = 1.26$, $\epsilon = 0.253$, $\omega R^2/\nu = 2\pi/T$ Ga = **18.0**!

Numerical parameters?

Other parameters?

Summary and concluding remarks

- At a given Ga (hence Re), bubbles bounce close to wall at low-to-moderate Bo
- Their is a point-to-point connection between near-wall bouncing and vortex shedding
- Finally, there is likely a big mismatch with the experiment in the bouncing frequency, for which the cause is still unclear

Some extra but indirect validations

Case A: Ga = 63, Bo = 0.074, clean bubble bouncing close to horizontal wall (Kosior et al. 2014)

Case B: Ga = 27, Bo = 0.14, clean bubble rising along inclined wall (Barbosa et al. 2016)

