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Motivations to study cavitation

Courtesy:Atomic test channel(youtube)

Underwater explosion

Courtesy:BuBclean(youtube)

Surface cleaning

Courtesy:S.W. Choi(youtube)

Shockwave histotripsy



Tool
We use two phase all-Mach solver of basilisk.
http://basilisk.fr/sandbox/fuster/Allmach3.0/two-phase-compressible.h



Overview of my PhD

Stable bubble Unstable bubble
microlayer

Unstable bubble
No microlayer

1. We understand heterogeneous bubble nucleation and
dynamics of microlayer formation using Basilisk.
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2. We understand the jetting during the collapse
of bubble attached to wall.
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Nucleation threshold (Quasi-static theory)
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Nucleation threshold (Quasi-static theory)

Courtesy:NCFM

Blake’s threshold and radius

Rcr
R0

=
(

3
2γ

R0pL,0
σ

(
1 + 2 σ

R0pL,0

))3γ−1

= g
(

σ
R0pL,0

)
pcr
pL,0

= −
(

3
2γ

R0pL,0
σ

(
1 + 2 σ

R0pL,0

)) 1
1−3γ

2 σ
R0pL,0

(
1− 1

3γ

)
= f

(
σ

R0pL,0

)



Numerical predictions
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Bubbles attached to walls (quasi-static theory)



Bubbles attached to walls (quasi-static theory)

Free slip Pinning



Bubbles attached to walls (quasi-static theory)

Free slip Pinning

Air-Water



Effect of boundary condition
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Effect of boundary condition

Free slip Pinning

Pinning of contact line acts as a secondary effect that stabilizes the nuclei.
Pinning effects become increasingly important as α0 increases.



Complete dynamics using a
contact line model



Contact line model
Standard no-slip boundary condition predicts logarithmically diverging
shear stresses.



Contact line model
Standard no-slip boundary condition predicts logarithmically diverging
shear stresses.

α - static contact angle (imposed at smallest grid)

Afkhami, Shahriar, et al. ”Transition in a numerical model of contact line dynamics and forced dewetting.” Journal of Computational Physics (2018).
Kamal, Catherine, et al. ”Dynamic drying transition via free-surface cusps.” Journal of fluid mechanics (2019)
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Problem setup (Axisymmetric)

Bubble shape(t) = F(∆p, pL,0, ρl, ρg, µl, µg, σ, Rc,0, α, cl)



Problem setup (Axisymmetric)

Bubble shape
(
t∗ = tUc

Rc,0

)
= G (p∗, ρ∗,m,Oh,Ca,Ma, α)

p∗ = ∆p
pL,0

, ρ∗ =
ρg
ρl
, m =

µg
µl

Oh = µl
ρlσRc,0

, Ca = µlUc
σ , Ma = Uc

cl
, α

Characteristic scales: Uc =
√

2
3

∆p
ρl

, Lc = Rc,0, ρc = ρl



Problem setup (Axisymmetric)

Bubble shape
(
t∗ = tUc

Rc,0

)
= G (p∗, ρ∗,m,Oh,Ca,Ma, α)

p∗ = ∆p
pL,0

, ρ∗ =
ρg
ρl
, m =

µg
µl

Oh = µl
ρlσRc,0

, Ca = µlUc
σ , Ma = Uc

cl
, α

Characteristic scales: Uc =
√

2
3

∆p
ρl

, Lc = Rc,0, ρc = ρl



Problem setup (Axisymmetric)

Bubble shape
(
t∗ = tUc
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To simplify, we fix ρ∗ = 10−3, m = 10−2, Ma = 0.003(Uc � cl)
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Problem setup (Axisymmetric)

Bubble shape
(
t∗ = tUc

Rc,0

)
= G (p∗, ρ∗,m,Oh,Ca,Ma, α)

To simplify, we fix ρ∗ = 10−3, m = 10−2, Ma = 0.003(Uc � cl)

Bubble shape(t∗) = G (p∗,Oh,Ca, α)

Alternatively, we can use Re = Ca
Oh2 and We = Ca2

Oh2



Overall view
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Characteristic points on bubble interface

Three characteristic velocities: (a) Bubble height uh

(b) Contact line uCL

(c) Bubble width ucm



Effect of capillary number
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Effect of capillary number
Oh = 0.032

λnum
Rc,0

= 0.01

varying Ca = µUc
σ

Large CaSmall Ca



Can we say more about the contact line velocity?

Ca(uCL) = UCL
σ/µ



Effect of contact angle
Oh = 0.032� 1 λnum

Rc,0
= 0.01

varying Ca = µUc
σ and α

Ca(uCL) = 1
1
Ca + 1

Ca∞
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Effect of contact angle
Oh = 0.032� 1 λnum

Rc,0
= 0.01

varying Ca = µUc
σ and α

Ca(uCL) = 1
1
Ca + 1

Ca∞

Recall Cox-Voinov law

���:
0αapp = α3 + 9Ca(uCL)ln(L/λ)

Ca(uCL) = 1
9ln(λ/L)α

3



Effect of contact angle
Oh = 0.032� 1 λnum

Rc,0
= 0.01

varying Ca = µUc
σ and α

Ca(uCL) = 1
1
Ca + 1

Ca∞

Recall Cox-Voinov law

���:
0αapp = α3 + 9Ca(uCL)ln(L/λ)

Ca(uCL) = 1
9ln(λ/L)α

3

Ca∞ varies with cube of α



Overall dynamics
For α = 90◦

(i) (ii) (iii)



Overall dynamics
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Microlayer starts to form when Ca� Cacr and for Ohnesorge number given by bubble size.
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Overall dynamics
For α = 90◦

Microlayer starts to form when Ca� Cacr and for Ohnesorge number given by bubble size.

Also, Re = Ca
Oh2 →∞ and We = Ca2

Oh2 →∞.

Implying that inertial effects can be important at microlayer scale.



Structure of microlayer
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Scaling for the height of microlayer
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BL theory works for large H but it misses effect of surface tension



Effect of contact angle



Conclusions

I Resolved simulations of microlayer formation are performed
using slip model.

I Our results show that microlayer forms in the regimes where
Ca ∼ Cacr for given Oh.

I In this regime, the contact line capillary number takes an
asymptotic velocity, thus its motion is controlled only by
visco-capillary effects, inertial effects can also play important role
at scale of microlayer height.

I In this limiting regime, we can approximately predict the structure
of microlayer from boundary layer approximation, while
neglecting the surface tension effects.



THANK YOU
http://basilisk.fr/sandbox/msaini


