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Introduction

Navier-Stokes film

Thin fluid film falling down an inclined plane
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Introduction

Navier-Stokes film

Thin fluid film falling down an inclined plane

Our aim is to stabilise the uniform film solution by injecting and removing
fluid from the base at a finite number of actuators.
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Introduction

Navier-Stokes film

Thin fluid film falling down an inclined plane

Navier-Stokes flow in the fluid

Re(ut + uuy + VUy) = —px+ 24 Uy + Uyy,
Re(ve + uvy + vvy) = —py, — 2cot b + vy + vy,

ux + vy, = 0.

Holroyd, Cimpeanu, and Gomes Falling liquid film control July 2023 4/21



Introduction

Navier-Stokes film

Thin fluid film falling down an inclined plane

Boundary conditions at the base
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Introduction

Navier-Stokes film

Thin fluid film falling down an inclined plane

At the interface, y = h(x, t), the nonlinear dynamic stress balance

(vx + Uy)(l - h>2<) + 2hX(Vy —ux) =0,

1 h
2 hlw b P
X (V + Uy)) Ca (1 + h)2<)3/27

2
pP— m(vy + UXh
and the kinematic boundary condition
hy = v — uhy.
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Introduction

Navier-Stokes film

: hix, )
16,9 >
Re, Ca =

@ multi-phase flow
@ complex boundary conditions

@ highly nonlinear

@ computationally expensive
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Introduction

Feedback control

The most general feedback control problem looks like

xt = Ax + Bu, u= Ky, y = Cx.
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Feedback control

The most general feedback control problem looks like

x¢ = (A + BKC)x.
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Introduction

Feedback control
The most general feedback control problem looks like
x¢ = (A + BKC)x.

Unfortunately, this problem is too hard. We can make it easier by
allowing full observations:

x¢ = (A+ BK)x.
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Introduction

Feedback control

The most general feedback control problem looks like
x¢ = (A + BKC)x.

Unfortunately, this problem is too hard. We can make it easier by
allowing full observations:

x¢ = (A+ BK)x.

This problem is still too hard.
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Introduction

Feedback control
The most general feedback control problem looks like
x¢ = (A + BKC)x.

Unfortunately, this problem is too hard. We can make it easier by
allowing full observations:

x¢ = (A+ BK)x.

This problem is still too hard. We can make it solvable by adding
restrictions on A, B, K:

x¢ = (A+ BK)x,

to give a system of linear ODEs.
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Introduction

Feedback control

The most general feedback control problem looks like
x¢ = (A + BKC)x.

Unfortunately, this problem is too hard. We can make it easier by
allowing full observations:

x¢ = (A+ BK)x.

This problem is still too hard. We can make it solvable by adding
restrictions on A, B, K:
x¢ = (A+ BK)x,

to give a system of linear ODEs. We now need to choose K so that
A+ BK has no positive eigenvalues.
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Introduction

Linear quadratic regulator control

We now need to choose K so that A+ BK has no positive eigenvalues.
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Introduction

Linear quadratic regulator control

We now need to choose K so that A+ BK has no positive eigenvalues.

The choice of K is currently not unique, so we introduce a quadratic cost
o0
c= / x"Ux + u" Vudt,
0

thus forming an LQR problem.
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Introduction

Problem of control

Navier-Stokes film

pix LQR controls
f(x,t) =
Re, Ca = @ cheap to compute

_ @ easy to design
@ multi-phase flow

@ complex boundary conditions

@ highly nonlinear

@ computationally expensive
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Introduction

Problem of control

Navier-Stokes film

hix, )

Re, Ca o
@ multi-phase flow
@ complex boundary conditions
@ highly nonlinear
@ computationally expensive

LQR controls
@ cheap to compute
@ easy to design

But requires a linear system of
ODEs
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Hierarchical framework

Reduced order model

Currently, the fluid problem is too complex to begin to think about
deriving controls.
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Hierarchical framework

Reduced order model

Currently, the fluid problem is too complex to begin to think about
deriving controls. By assuming that the size of the perturbations is small, ie

[Vh]
€= ——

1
hoSh

we can significantly simplify the system.
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Hierarchical framework

Reduced order model

Currently, the fluid problem is too complex to begin to think about
deriving controls. By assuming that the size of the perturbations is small, ie

we can significantly simplify the system:

ht+qX:f7
2Re 3 h
e = — (2—2h coth + =X
5 " deta=3 < cotv+ Ca)
18¢%hy  34hqqy  hqgf
R — — .
* e( 35 33 5

These are the weighted-residual integral boundary layer equations.
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Hierarchical framework

Reduced order model

Currently, the fluid problem is too complex to begin to think about
deriving controls. By assuming that the size of the perturbations is small, ie

[Vh]
€= ——

1
hoSh

we can significantly simplify the system:

ht+qX:f7
2Re 3 h
e = — (2—2h coth + =X
5 " deta=3 < cotv+ Ca)
18¢%hy  34hqqy  hqgf
R — — .
* e( 35 33 5

These are the WR equations.
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Hierarchical framework

Reduced order model

2
t=0
1
0 | | | | |
2 T T T T T
t=50
1M
O | | | | |
2 T T T T T
t =300
1, |
O | | | | |

Development of travelling wave for Navier-Stokes and WR systems. Re = 10,
Ca = 0.05.
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Hierarchical framework

Linearisation

ht + qx = fa
2Re h3 h
— =—(2—-2h, i
5 Ma +4q 3 ( cotf + Ca )
18¢°h,  34hqq.  hqf
R _ 4
e ( 35 3 5

These equations are still very nonlinear.
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Hierarchical framework

Linearisation

ht + ax = fa
2Re h3 h
— =—(2—-2h, i
5 gt +4q 3 ( cotf + Ca)

18¢°h,  34hqq.  hqf
R — — .
+ e( 35 3 5

These equations are still very nonlinear. Assuming that any perturbations
from the uniform film are small

N 2 N
h=1+0h  q=3+04  f=0f,
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Hierarchical framework

Linearisation

ht + ax = fa

2R h3 hyoxx
ehzqt+q:—(2—2hxcot0+ )

3 Ca

5
18¢°h,  34hqq.  hqf
R — — .
+ e( 35 3 5

These equations are still very nonlinear. Assuming that any perturbations

from the uniform film are small

N 2 N
h=1+0h  q=3+04  f=0f,

we have
Et:_ax—i_fa

5 4 5cotf 5 A 5 34 1.
Go=| >+ (2 Ot —— Do h— | > 4+ o g+ 2F.
at [Re (7 3Re ) 6ReCa ] [2Re+21 ]‘”3
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Hierarchical framework

Discretisation

Finally we can discretise

o =L Sl la) v
= + f,
[q} ¢ [th Jaq] 19 Vg
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Hierarchical framework

Discretisation

Flnally we can discretise
|: :| |: M . :| |: :| |: h:| ,
q t qh Jqq q LIJq

(b e[l ) a)
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Hierarchical framework

Discretisation

Finally we can discretise
ol = [ ol Lol vl e
q], Jah  Jaql 19 Vg
= (B = vl ) o)
qh Jaq Vg
Or, in more concise notation,

§e=(J+VK)E
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Hierarchical framework

[ Full Navier-Stokes J

asymptotics

[ Weighted Residuals ]

linearisation

[ Linear PDEs }

discretisation
y

[ Linear ODEs }
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Hierarchical framework

[ Full Navier-Stokes J

asymptotics

[ Weighted Residuals ]

linearisation

[ Linear PDEs }

discretisation
y

[ Linear ODEs ]—>[ Control j
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Hierarchical framework

( Full Navier-Stokes

)<

)

asymptotics

[ Weighted Residuals }

linearisation

[ Linear PDEs

J

y

discretisation

[ Linear ODEs

—
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Numerical experiments

What does this actually look like in practice?
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Numerical

Gain matrix

experiments

1.5

T
—— Actuator shape

Gain, Re=0.5
----Gain, Re =10
1F —— Gain, Re=30 | |
£
&
X
§ os| 1
Qo
3
&
0 - S
—051 I I I I i
0 5 10 15 25 30
X
Feedback gain for a single actuator. Re various, Ca = 0.05.
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Numerical experiments

Simulation

Initial development of a travelling wave. Re = 15, Ca = 0.05.
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Numerical experiments

Simulation

Measurement of the height. Re = 15, Ca = 0.05.
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Numerical experiments

Simulation

Computation of controls. Re = 15, Ca = 0.05.
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Numerical experiments

Simulation

T R T
Controls stabilising the uniform film. Re = 15, Ca = 0.05.
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Numerical experiments

Successful control
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Controls attempting to stabilise the uniform film. Re various, Ca = 0.05.
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Numerical experiments

Successful control
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Controls attempting to stabilise the uniform film. Re various, Ca = 0.05.
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Numerical experiments

Successful control
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Controls attempting to stabilise the uniform film. Re various, Ca = 0.05.
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Numerical experiments

Successful control
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Controls attempting to stabilise the uniform film. Re various, Ca = 0.05.
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Numerical experiments

Successful control
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Controls attempting to stabilise the uniform film. Re various, Ca = 0.05.
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Numerical experiments

Successful control
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Controls attempting to stabilise the uniform film. Re various, Ca = 0.05.
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Numerical experiments

Successful control
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Numerical experiments

Successful control
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Controls attempting to stabilise the uniform film. Re various, Ca = 0.05.
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Numerical experiments
Successful control
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Controls attempting to stabilise the uniform film. Re various, Ca = 0.05.
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Numerical experiments

Successful control
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Controls attempting to stabilise the uniform film. Re various, Ca = 0.05.
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Numerical experiments

Successful control
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Controls attempting to stabilise the uniform film. Re various, Ca = 0.05.
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Stability Analysis

What predictions can we make about the stabilisability of the system?
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Stability Analysis

We can’t make any predictions about the stabilisability of the full
Navier-Stokes system.
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Stability Analysis

We can’t make any predictions about the stabilisability of the full

Navier-Stokes system. But we can reuse the linear theory to get an
approximation. Recall

€= (J+ VK)E.
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Stability Analysis

We can’t make any predictions about the stabilisability of the full
Navier-Stokes system. But we can reuse the linear theory to get an
approximation. Recall

§e=(J+HVK)E

Shifting to Fourier space and explicitly separating the unstable modes

V. K, Js

(o= [ Bk 9]
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Stability Analysis

We can’t make any predictions about the stabilisability of the full

Navier-Stokes system. But we can reuse the linear theory to get an
approximation. Recall

& =(J+VK)E
Shifting to Fourier space and explicitly separating the unstable modes
- [J+V,K, 0]
= [ R, J} &

So the number of controls should exceed the number of unstable
modes.
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Stability analysis

Unstable modes

ikx+At

If we look at a unimodal perturbation h = 1 + he we have

5 34 5 4 S5cotf 5
2 . . 2 4
2k g k K*) =o.
A +<2Re+21l ))\—I_(Re’ [7 3Re ] * 6ReCa ) 0
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Stability analysis

Unstable modes

ikx+At

If we look at a unimodal perturbation h = 1 + he we have

5 34 5 4 S5cotf 5
2 . . 2 4
2k g k K*) =o.
A +<2Re+2ll )“(Re’ [7 3Re ] * 6ReCa ) 0

Rescaling to allow for L # 2w we can compute the unstable mode count

n=1+2 {%\/Ca (gRe —2cot9)J .
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Stability analysis
Numerical comparison
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In practice the controls outperform the linear predictions.
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Conclusion

@ Optimal feedback control for complex systems is achievable
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Conclusion

@ Optimal feedback control for complex systems is achievable

@ Controls function well outside the range of model validity
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Conclusion

@ Optimal feedback control for complex systems is achievable
@ Controls function well outside the range of model validity

o Controls exceed expected performance

Holroyd, Cimpeanu, and Gomes Falling liquid film control July 2023 20/21



Conclusion

@ Optimal feedback control for complex systems is achievable
@ Controls function well outside the range of model validity

o Controls exceed expected performance

Next steps:
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Conclusion

@ Optimal feedback control for complex systems is achievable
@ Controls function well outside the range of model validity

o Controls exceed expected performance

Next steps:
@ 3D flows
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Conclusion

@ Optimal feedback control for complex systems is achievable
@ Controls function well outside the range of model validity

o Controls exceed expected performance
Next steps:

@ 3D flows

@ Alternative actuator mechanisms
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Conclusion

@ Optimal feedback control for complex systems is achievable
@ Controls function well outside the range of model validity

o Controls exceed expected performance

Next steps:
@ 3D flows
@ Alternative actuator mechanisms

@ Restricted observations
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Conclusion

@ Optimal feedback control for complex systems is achievable
@ Controls function well outside the range of model validity

o Controls exceed expected performance

Next steps:
@ 3D flows
@ Alternative actuator mechanisms
@ Restricted observations

o Infinite-dimensional control
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More detail

Preprint available on arXiv Code available on GitHub

github.com/OaHolroyd/falling-film-
control /tree/paper-dec-2022
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arxiv.org/pdf/2301.11379


https://arxiv.org/pdf/2301.11379
https://github.com/OaHolroyd/falling-film-control/tree/paper-dec-2022
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