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Motivation

• Mass transfer of soluble species occurs in many natural and industrial systems. 

Mass transfer of soluble species

• Air-Sea gas transfer

• Chemical reactors

• Green production of hydrogen

• Complex physics (multi-phase flow, interfacial discontinuity, reactive species).

• Design models rely on simplified correlation formulae.

Diffusive mass 
transfer

Bubble entrainment
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Problem description 

Soluble species in bubbly flows

• Disperse bubbly flow

• Soluble species in the liquid
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Σ

Ωd Ω𝑐

𝑐(𝑥, 𝑡)

Problem description 

Soluble species in bubbly flows

• Disperse bubbly flow

• Soluble species in the liquid

𝑐𝑐 Σ =
𝑐𝑑 Σ

𝐻𝑒

• Henry’s law for concentration jump
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Numerical framework

• Incompressible DNS + geometric VOF

• Phase-change model

Direct Numerical Simulations of two-phase flows
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Transport of species

Two-scalar approach

• Two scalar equations for each species 
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Mass 
conservation
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• Species confined within the respective 

phase during advection/diffusion

• Advection: tracers associated to VOF 

field

• Diffusion coefficient weighted by the 

face fraction field [*]

* Magdelaine-Guillot de Suduiraut, Q., 2019. Hydrodynamique des films liquides hétérogènes. Thesis. Sorbonne Université.
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Mass transfer rate

A geometric scheme

* Bothe, D., Fleckenstein, S., 2013. A volume-of-fluid-based method for mass transfer processes at fluid particles. Chem. Eng. Sci. 101, 283–302. Page 8

• Diffusion-driven mass transfer (Fick’s law)

• ሶ𝑚 = −
𝐷𝑐𝑀

1−𝑦

𝜕𝑐𝑐

𝜕𝒏Σ

• −
𝜕𝑐𝑐

𝜕𝒏Σ
= 𝑓𝑃

𝑐𝑐 𝑃1 −𝑐𝑐(𝑃)

𝑃𝑃1
+ (1 − 𝑓𝑃)

𝑐𝑐 𝑃2 −𝑐𝑐(𝑃)

𝑃𝑃2
 [*]

• 𝑐𝑐 𝑃 =
𝑐𝑑 𝑃

𝐻𝑒
 (Henry’s law)
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Mass transfer rate

A geometric scheme
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Coupling with a geometric VOF method

Incompatibility issue

• Geometric VOF method [*]

• Kinematic constraint: 

* Weymouth, G.D., Yue, D.K.P., 2010. Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229, 2853–2865.

Δ𝑡

Δ
𝐻(𝑖,𝑗)∇Δ ⋅ 𝒖 = 0

𝐻(𝑖,𝑗) = ቊ
1 if 𝑓 > 0.5
0 Otherwise

Page 9
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Coupling with a geometric VOF method

Velocity extension

• Always true in pure gas cells (𝐻(𝑖,𝑗) = 0)

Δ𝑡

Δ
𝐻(𝑖,𝑗)∇Δ ⋅ 𝒖 = 0

Page 10
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• Mass transfer redistribution [*,**]

* Gennari, G., Jefferson-Loveday, R., Pickering, S. J., 2022. A phase-change model for diffusion-driven mass transfer problems in incompressible two-phase flows. 
Chem. Eng. Sci. 259 117791.
** Boyd, B., Ling, Y., 2023. A consistent volume-of-fluid approach for direct numerical simulation of the aerodynamic breakup of a vaporizing drop. Computers & 
Fluids 254 105807.
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• Mass transfer redistribution [*,**]
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Validation

Velocity extension

• Bubble with constant mass transfer rate

Page 11
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Validation

Velocity extension

• Bubble with constant mass transfer rate

• With 

correction

• Without 

correction

Page 11* Gennari, G., Jefferson-Loveday, R., Pickering, S. J., 2022. A phase-change model for diffusion-driven mass transfer problems in incompressible two-phase flows. 
Chem. Eng. Sci. 259 117791.
 

• More tests here [*]
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Validation

Rising bubble at different Péclet numbers

* Takemura, F., Yabe, A., 1998. Gas dissolution process of spherical rising gas bubbles. Chem. Eng. Sci. 53, 2691–2699.

•                                                                  [*]𝑆ℎ =
2

𝜋
1 −

2

3

1

1 + 0.09𝑅𝑒𝑏
Τ2 3

Τ3 4

Τ1 2

2.5 + 𝑃𝑒

      

Page 14

𝑃𝑒
𝑃𝑒 = 46500

𝑃𝑒 = 4650

𝑃𝑒 = 465
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Validation

• Bubbles with generic shapes are corrected trough a shape factor: 𝑆𝑟 = ൗ
𝐴Σ

𝐴𝑠𝑝ℎ𝑒𝑟𝑒

Rising bubbles with different shapes

run2 run3 run4

Bubble dissolution in Taylor-Couette flow
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run1

• Four cases [*]:

* Farsoiya, P., Magdelaine, Q., Antkowiak, A., Popinet, S., & Deike, L. (2023). Direct numerical simulations of bubble-mediated gas transfer and dissolution in 
quiescent and turbulent flows. Journal of Fluid Mechanics, 954, A29.
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Taylor-Couette flow

• Vortices enhance the mixing within the reactor

Flow instability and Taylor vortices

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑

Axial Velocity* Species production 
on the inner wall

𝑅𝑒 =
𝜌Ω𝑟𝑖𝑛𝑑

𝜇

𝜂 =
𝑟𝑖𝑛

𝑟𝑜𝑢𝑡
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* 𝑅𝑒 = 1000
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Taylor-Couette flow

• Vortices enhance the mixing within the reactor

Flow instability and Taylor vortices

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑
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Axial velocity

* 𝑅𝑒 = 1000

Axial Velocity* Species production 
on the inner wall
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Taylor-Couette flow

• Contours of axial velocity at different Reynolds

• Radius ratio 𝜂 =
𝑟𝑖𝑛

𝑟𝑜𝑢𝑡
= 0.5

• Periodic top/bottom boundaries

Flow instability and Taylor vortices

Case Re Regime

a) 1000 Laminar

b) 3000 Turbulent

c) 5000 Turbulent

Bubble dissolution in Taylor-Couette flow
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𝑅𝑒 = 1000 𝑅𝑒 = 3000

𝑅𝑒 = 5000
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𝑅𝑒 = 1000 𝑅𝑒 = 3000

𝑅𝑒 = 5000
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Taylor-Couette flow

• Contours of axial velocity at different Reynolds

• Radius ratio 𝜂 =
𝑟𝑖𝑛

𝑟𝑜𝑢𝑡
= 0.5

• Periodic top/bottom boundaries

Flow instability and Taylor vortices

Case Re Regime

a) 1000 Laminar

b) 3000 Turbulent

c) 5000 Turbulent

Bubble dissolution in Taylor-Couette flow

BGUM 2023
July 6th, Paris

𝑅𝑒 = 1000 𝑅𝑒 = 3000

𝑅𝑒 = 5000
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Taylor-Couette flow

• Inner and Outer torques balance at 

equilibrium

• Non-dimensional torque:

‒ 𝐺𝑤 =
𝑇𝑤

𝜌𝜈2𝐿𝑧

Validation – Cylinder Torque

𝐿𝑧

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑

Bubble dissolution in Taylor-Couette flow
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Taylor-Couette flow

• Experimental Formula (Wendt, 1933 *):

‒ 𝐺𝑤 = 1.45
𝜂 Τ3 2

1−𝜂 Τ7 4 𝑅𝑒 Τ3 2

Validation – Cylinder Torque Non-dimensional Torque: 𝐺𝑤 =
𝑇𝑤

𝜌𝜈2𝐿𝑧

𝜂 =
𝑟𝑖𝑛

𝑟𝑜𝑢𝑡

𝐿𝑧

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑

Bubble dissolution in Taylor-Couette flow

BGUM 2023
July 6th, Paris

* Wendt, F. (1933). Turbulente strömungen zwischen zwei rotierenden konaxialen zylindern. Ingenieur-Archiv, 4(6), 577-595
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Taylor-Couette flow

• Average azimuthal velocity

Validation – Velocity field

𝑟

< 𝑢𝜃>𝑧𝜃𝑡

Bubble dissolution in Taylor-Couette flow

BGUM 2023
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Taylor-Couette flow

• Average azimuthal velocity

Validation – Velocity field

𝑟

< 𝑢𝜃>𝑧𝜃𝑡 𝑅𝑒 = 1000 𝑅𝑒 = 3000

𝑅𝑒 = 5000

Bubble dissolution in Taylor-Couette flow

BGUM 2023
July 6th, Paris

Chouippe, A., Climent, E., Legendre, D., & Gabillet, C. (2014). Numerical simulation of bubble 
dispersion in turbulent taylor-couette flow. Physics of Fluids, 26 (4), 043304.
Dong, S. (2007). Direct numerical simulation of turbulent taylor–couette flow. Journal of Fluid 
Mechanics, 587, 373–393 
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Taylor-Couette flow

• Average azimuthal velocity fluctuations

‒ 𝑢𝜃 =< 𝑢𝜃 > +𝑢𝜃′

• Typical two-peak profiles near the 

walls (channel flow)

Validation – Velocity field

𝑅𝑒 = 5000 𝑅𝑒 = 3000

Bubble dissolution in Taylor-Couette flow

BGUM 2023
July 6th, Paris

Chouippe, A., Climent, E., Legendre, D., & Gabillet, C. (2014). Numerical simulation of bubble 
dispersion in turbulent taylor-couette flow. Physics of Fluids, 26 (4), 043304.
Dong, S. (2007). Direct numerical simulation of turbulent taylor–couette flow. Journal of Fluid 
Mechanics, 587, 373–393 



Page 43Page 43

Mass transfer in Taylor-Couette flow

• A single bubble is let free to rise in an under-saturated liquid

• 𝐺𝑎 = 1050.7, 𝐵𝑜 = 3.4, 𝑆𝑐 = 0.458, Τ𝜌𝑐
𝜌𝑑 = 767.7, Τ𝜇𝑐

𝜇𝑑 = 52.2

Simulation Setup

Case Re Regime Τ𝑫𝒃
𝒕=𝟎 𝒅 Cells/𝑫𝒃

𝒕=𝒐 Gravity

a) 0 N/A Τ1 3 164 yes

b) 1000 Laminar Τ1 3 164 yes

c) 3000 Turbulent Τ1 3 164 yes

d) 5000 Turbulent Τ1 3 164 yes

e) 1000 Laminar Τ1 3 164 no

f) 3000 Turbulent Τ1 3 164 no

g) 5000 Turbulent Τ1 3 164 no

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑

Bubble dissolution in Taylor-Couette flow

BGUM 2023
July 6th, Paris
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Mass transfer in Taylor-Couette flow

• Iso-surfaces of dissolved gas

Iso-surfaces of dissolved gas

Case Re Regime

a) 0 N/A

b) 1000 Laminar

c) 3000 Turbulent

d) 5000 Turbulent

𝑅𝑒 = 0 𝑅𝑒 = 1000

𝑅𝑒 = 3000 𝑅𝑒 = 5000

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑

Bubble dissolution in Taylor-Couette flow

BGUM 2023
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Mass transfer in Taylor-Couette flow

• Iso-surfaces of dissolved gas

Iso-surfaces of dissolved gas

Case Re Regime

a) 0 N/A

b) 1000 Laminar

c) 3000 Turbulent

d) 5000 Turbulent

𝑅𝑒 = 0 𝑅𝑒 = 1000

𝑅𝑒 = 3000 𝑅𝑒 = 5000

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑

Bubble dissolution in Taylor-Couette flow
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Mass transfer in Taylor-Couette flow

• Iso-surfaces of dissolved gas

Iso-surfaces of dissolved gas

Case Re Regime

a) 0 N/A

b) 1000 Laminar

c) 3000 Turbulent

d) 5000 Turbulent

𝑅𝑒 = 0 𝑅𝑒 = 1000

𝑅𝑒 = 3000 𝑅𝑒 = 5000

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑

Bubble dissolution in Taylor-Couette flow
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Mass transfer in Taylor-Couette flow

• Iso-surfaces of dissolved gas

Iso-surfaces of dissolved gas

Case Re Regime

a) 0 N/A

b) 1000 Laminar

c) 3000 Turbulent

d) 5000 Turbulent

𝑅𝑒 = 0 𝑅𝑒 = 1000

𝑅𝑒 = 3000 𝑅𝑒 = 5000

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑

Bubble dissolution in Taylor-Couette flow
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Mass transfer in Taylor-Couette flow

• Bubble initial diameter is 1/3 of 

the gap

• Buoyancy and surface tension 

overcome the effect of the 

carrier flow on the dissolution 

rate.

Volume dissolution

Bubble dissolution in Taylor-Couette flow

BGUM 2023
July 6th, Paris
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Mass transfer in Taylor-Couette flow

• 𝑆ℎ =
𝑘𝑚𝐷𝑏

𝐷
, 𝑘𝑚 = −

Σ׬
ሶ𝑚𝑑𝑆

𝐴Σ𝑀Δ𝑐

• 𝑅𝑒𝑏 =
𝜌𝑐𝑈𝑏𝐷𝑏

𝜇𝑐

• 𝑆ℎ and 𝑅𝑒 are generally related in 

bubbly flows driven by buoyancy. 

Sherwood numbers

𝑅𝑒 = 0 𝑅𝑒 = 1000

𝑅𝑒 = 3000 𝑅𝑒 = 5000

Bubble dissolution in Taylor-Couette flow

BGUM 2023
July 6th, Paris
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Mass transfer in Taylor-Couette flow

• Typical behavior of the 𝑆ℎ − 𝑅𝑒 curves 

suggests a comparison against common 

correlation formulae*:

‒ 𝑆ℎ = 2 + 0.651
𝑃𝑒1.72

1+𝑃𝑒1.22 for 𝑅𝑒𝑏 → 0, 𝑆𝑐 → ∞

‒ 𝑆ℎ = 2 +
0.232𝑃𝑒1.72

1+0.205𝑃𝑒1.22 for 𝑅𝑒𝑏 → ∞, 𝑆𝑐 → 0

Sherwood numbers

* Oellrich, L., Schmidt-Traub, H., & Brauer, H. (1973)

Bubble dissolution in Taylor-Couette flow

BGUM 2023
July 6th, Paris
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Mass transfer in Taylor-Couette flow

• Typical behavior of the 𝑆ℎ − 𝑅𝑒 curves 

suggests a comparison against common 

correlation formulae*:

‒ 𝑆ℎ = 2 + 0.651
𝑃𝑒1.72

1+𝑃𝑒1.22 for 𝑅𝑒𝑏 → 0, 𝑆𝑐 → ∞

‒ 𝑆ℎ = 2 +
0.232𝑃𝑒1.72

1+0.205𝑃𝑒1.22 for 𝑅𝑒𝑏 → ∞, 𝑆𝑐 → 0

Sherwood numbers

𝑅𝑒 = 0 𝑅𝑒 = 1000

𝑅𝑒 = 3000 𝑅𝑒 = 5000

* Oellrich, L., Schmidt-Traub, H., & Brauer, H. (1973)

Bubble dissolution in Taylor-Couette flow
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Mass transfer in Taylor-Couette flow

No gravity – trapped bubbles

𝑅𝑒 = 1000

𝑅𝑒 = 3000

𝑅𝑒 = 5000

Top view Side view

Bubble dissolution in Taylor-Couette flow

BGUM 2023
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Taylor-Couette flow

Wake effect

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑

3𝑅𝑏

𝑅𝑒 = 0 𝑅𝑒 = 1000 𝑅𝑒 = 3000 𝑅𝑒 = 5000

Bubble dissolution in Taylor-Couette flow

BGUM 2023
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Taylor-Couette flow

Wake effect

Bubble dissolution in Taylor-Couette flow

BGUM 2023
July 6th, Paris

𝑅𝑒 = 0 𝑅𝑒 = 1000

• The top bubble behaves as if it 

were isolated

• The bottom bubble has a slower 

dissolution rate
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Taylor-Couette flow

Wake effect

Bubble dissolution in Taylor-Couette flow

BGUM 2023
July 6th, Paris

𝑅𝑒 = 0 𝑅𝑒 = 1000

𝑅𝑒 = 3000 𝑅𝑒 = 5000

• The top bubble behaves as if it 

were isolated

• The bottom bubble has a slower 

dissolution rate

• For larger rotating speed (and 

stronger Taylor vortices), top 

and bottom bubbles behave 

similarly 



Page 56Page 56

Conclusions
• Numerical framework for the mass transfer of soluble species in two-phase 

incompressible flows based on Henry’s law.

• Redistribution of the mass source term and divergence-free velocity field in 

interfacial cells.

• Modelling and Validation of laminar and turbulent Taylor-Couette flows

• Large bubbles are less sensitive to the carrier flow (in terms of dissolution rate)

• Standard 𝑆ℎ correlation formulae can provide sensible results when bubbles are 

mainly driven by gravity

• Stronger Taylor vortices generate more dispersion and enhance global mass 

transfer for multiple bubbles

Page 18

Bubble dissolution in Taylor-Couette flow
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Thank you for your attention
Any questions?
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