Dynamics and Wakes of a Fixed and Freely Moving Angular Particle in an Inertial Flow
 Basilisk (Gerris) User's Meeting 2023

G. GAI, A. Wachs

Outline

1 Introduction

2 Flow past An Angular Particle

3 Freely Settling of A Tetrahedron

4 Conclusions and Perspectives

Angular Particles in Fluids

Particle-laden flows

- Sedimentation in rivers
- Particulate air pollution
- Coal \& biomass gasification, etc.

Angular particles

- Complex shapes, sharp edges
- Broad range of size and density
- Rotation, unsteady dynamics

DLM/FD and Adaptive Mesh Refinement

\times Lagranian multiplier

- Interior points
- Boundary points
+ Fluid nodes

Combined weak formulation

$$
\begin{aligned}
& \circ \int_{\Omega}\left(\frac{\partial \vec{u}}{\partial t}+(\vec{u} \cdot \nabla) \cdot \nabla \vec{v}\right) \cdot \vec{v} d \boldsymbol{x}-\int_{\Omega} p \nabla \cdot \vec{v} d \boldsymbol{x}+ \\
& \int_{\Omega} \mu_{f} \nabla \vec{u}: \nabla \vec{v} d \boldsymbol{x}=-\int_{P} \boldsymbol{\lambda} \cdot \vec{v} d \boldsymbol{x} \\
& \circ \int_{\Omega}-q \nabla \cdot \vec{u} d \boldsymbol{x} \\
& \circ\left(1-\frac{\rho_{f}}{\rho_{p}}\right) M\left(\frac{d \vec{U}}{d t}-\vec{g}\right) \cdot \vec{V}-\overrightarrow{F_{i}^{\prime}} \cdot \vec{V}=\int_{P} \boldsymbol{\lambda} \cdot \vec{V} d \boldsymbol{x} \\
& \circ\left(1-\frac{\rho_{f}}{\rho_{p}}\right) \frac{d I \vec{\omega}}{d t} \cdot \xi-\overrightarrow{T^{\prime}} \cdot \vec{\xi}=\int_{P} \boldsymbol{\lambda} \cdot(\xi \times \vec{r}) d \boldsymbol{x} \\
& \circ \int_{P} \vec{v} \cdot(\vec{u}-(\vec{U}+\boldsymbol{\omega} \times \vec{r})) d \boldsymbol{x}
\end{aligned}
$$

Octree mesh refinement

- Criterion: velocity gradient
- Smallest grid size on surface

Flow past An Angular Particle

Fixed (left) and Settling (right) Particle

Numerical set-up

- Cubic computational domain of size $40 D$ (fixed) and $700 D$ (settling)
- Octree refinement level: $n_{l}=12 \sim 15,32 \sim 100 \mathrm{pts} / D$

Platonic Solids

Three angular positions

Lagrange multiplier distribution

- Platonic solid with increasing sphericity
- Homogeneous distribution

Edge (E)
Face (F)

Vertex (V)

Vortex Generation on An Angular Particle

Front

$\omega_{x}= \pm 0.8$

Side front

$\omega_{x}= \pm 0.8$

Side back

Vortex Generation on An Angular Particle

Side front

$x=x_{p}+1.5$

G. Gai \& A. Wachs, JFM, 2023

Analogy to Optic Diffraction

Figure: Stream-wise component of vorticity $-0.5<\omega_{x}<0.5$ on the rear surface of the Platonic particles: from multi-axis symmetry to planar symmetry; $\omega_{x}>0$ in orange and $\omega_{x}<0$ in blue.

Symmetry breakup mechanism

- Opposite-signed vortex pairs
from front surface leading edges
- Repulsion of opposite sign, fusion of the same sign
- Vortex arm on the particle rear surface

Vortex Shedding Patterns

G. Gai \& A. Wachs, Part1 \& Part2, PRF, 2023

Double-Hairpin Vortex Shedding

Double symmetric shedding

- Edge tetrahedron
- Twice shedding frequency
- Planar symmetric

Shedding dynamics

- Front surface splitting stream
- Rear surface converging
- Unique shape of recirculation

Drag and Lift Coefficients

Figure: Drag coefficient C_{d} evolution in Re: TV (Δ), CV Figure: Lift-drag ratio C_{l} / C_{d} as a function $R e$: TV (Δ), $(■)$, OV (\bullet), DV (\bullet), IV (\bullet) and $\mathrm{S}(\bullet)$.

Freely Settling of A Tetrahedron

A Settling Platonic Particle in an Unbounded Fluid

A Settling Tetrahedron

$$
G a=50 \quad G a=90 \quad G a=140 \quad G a=300
$$

Steady settling

- Stable: face downwards
- Maximize drag
- Minimize settling velocity

Double helix vortex

- Rotation enhanced
- Strands elongated with $G a$

Stable Angular Position in the Helical Settling

$G a=140$

Helical Settling and Vortex Structure

Empirical Correlations Based on DNS

Settling $\mathcal{R} e$
○ $\widetilde{\mathcal{R} e}=2.573 \phi \mathcal{G} a-0.916 \mathcal{G} a-0.032 \exp (7.503 \phi)$
Wake length L_{w}

- $L_{w}=1.6521 u_{d}^{-1.2049}, u_{d}=u_{\text {crit }} / u_{\text {set }}$

G. Gai \& A. Wachs (In preparation), 2023

Conclusions \& Perspectives

Conclusions:

- Vorticity structure serves as image of the front surface
- Wake symmetry breakup due to vortex merging
- Rich vortex shedding patterns
- Rich path instability and settling regimes

Perspectives:

- Magnus effect of a rotating Platonic particle
- Free/turbulent suspensions of Platonic solids

Thank you!

