

University of British Columbia Department of Mathematics

Dynamics and Wakes of a Fixed and Freely Moving Angular Particle in an Inertial Flow

Basilisk (Gerris) User's Meeting 2023

G. GAI, A. Wachs

July 7, 2023

1 Introduction

- 2 Flow past An Angular Particle
- 3 Freely Settling of A Tetrahedron
- 4 Conclusions and Perspectives

Angular Particles in Fluids

Particle-laden flows

- Sedimentation in rivers
- Particulate air pollution
- Coal & biomass gasification, etc.

Angular particles

- Complex shapes, sharp edges
- Broad range of size and density
- Rotation, unsteady dynamics

G. GAI, A. Wachs

DLM/FD and Adaptive Mesh Refinement

Octree mesh refinement

- Criterion: velocity gradient
- Smallest grid size on surface

Combined weak formulation

$$\begin{array}{l} \circ \quad \int_{\Omega} \left(\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \cdot \nabla \vec{v} \right) \cdot \vec{v} d\boldsymbol{x} - \int_{\Omega} p \nabla \cdot \vec{v} d\boldsymbol{x} + \\ \int_{\Omega} \mu_{f} \nabla \vec{u} : \nabla \vec{v} d\boldsymbol{x} = - \int_{P} \boldsymbol{\lambda} \cdot \vec{v} d\boldsymbol{x} \\ \circ \quad \int_{\Omega} -q \nabla \cdot \vec{u} d\boldsymbol{x} \\ \circ \quad \left(1 - \frac{\rho_{f}}{\rho_{p}} \right) M \left(\frac{d \vec{U}}{d t} - \vec{g} \right) \cdot \vec{V} - \vec{F}_{i}' \cdot \vec{V} = \int_{P} \boldsymbol{\lambda} \cdot \vec{V} d\boldsymbol{x} \\ \circ \quad \left(1 - \frac{\rho_{f}}{\rho_{p}} \right) \frac{d \vec{I} \vec{\omega}}{d t} \cdot \boldsymbol{\xi} - \vec{T'} \cdot \vec{\xi} = \int_{P} \boldsymbol{\lambda} \cdot (\boldsymbol{\xi} \times \vec{r}) d\boldsymbol{x} \\ \circ \quad \int_{P} \vec{v} \cdot (\vec{u} - (\vec{U} + \boldsymbol{\omega} \times \vec{r})) d\boldsymbol{x} \end{array}$$

G. GAI, A. Wachs

1. Introduction

Flow past An Angular Particle

Fixed (left) and Settling (right) Particle

Numerical set-up

- \circ Cubic computational domain of size 40D (fixed) and 700D (settling)
- Octree refinement level: $n_l = 12 \sim 15, 32 \sim 100 \ pts/D$

Platonic Solids

Three angular positions

Vortex Generation on An Angular Particle

G. GAI, A. Wachs

2. Flow past An Angular Particle

Vortex Generation on An Angular Particle

Analogy to Optic Diffraction

Aperture

Far-field Pattern

Wake vorticity

Front vorticity

Wake streamline

Analogy to Optic Diffraction

- Same symmetry axes 0
- Imaging of opaque particle 0
- Deterministic pattern 0

dependent on front surface

G. GAI, A. Wachs

2. Flow past An Angular Particle

Symmetry Breaks: Interaction of Face Induced Vortices

Figure: Stream-wise component of vorticity $-0.5 < \omega_x < 0.5$ on the rear surface of the Platonic particles: from multi-axis symmetry to planar symmetry; $\omega_x > 0$ in orange and $\omega_x < 0$ in blue.

Symmetry breakup mechanism
Opposite-signed vortex pairs from front surface leading edges
Repulsion of opposite sign, fusion of the same sign
Vortex arm on the particle

rear surface

Vortex Shedding Patterns

G. Gai & A. Wachs, Part1 & Part2, PRF, 2023

G. GAI, A. Wachs

Double-Hairpin Vortex Shedding

Double symmetric shedding

- Edge tetrahedron
 - $\circ~$ Twice shedding frequency
 - $\circ~$ Planar symmetric

Shedding dynamics

- $\circ~$ Front surface splitting stream
- $\circ\,$ Rear surface converging
- $\circ~$ Unique shape of recirculation

Drag and Lift Coefficients

Figure: Drag coefficient C_d evolution in Re: TV (A), CV Figure: Lift-drag ratio C_l/C_d as a function Re: TV (A), (a), OV (\bullet), DV (\bullet), IV (\bullet) and S (\bullet). CV (a), OV (\bullet), DV (\bullet), IV (\bullet).

Freely Settling of A Tetrahedron

A Settling Platonic Particle in an Unbounded Fluid

A Settling Tetrahedron

G. GAI, A. Wachs

3. Freely Settling of A Tetrahedron

Stable Angular Position in the Helical Settling

Helical Settling and Vortex Structure

G. GAI, A. Wachs

3. Freely Settling of A Tetrahedron

Empirical Correlations Based on DNS

Conclusions:

- $\circ~$ Vorticity structure serves as image of the front surface
- $\circ~$ Wake symmetry breakup due to vortex merging
- $\circ~$ Rich vortex shedding patterns
- $\circ~{\rm Rich}$ path instability and settling regimes

Perspectives:

- $\circ\,$ Magnus effect of a rotating Platonic particle
- $\circ~{\rm Free}/{\rm turbulent}$ suspensions of Platonic solids

Thank you!

