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Motivation
Motivation and Aim of the Work01
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Alternative Liquid Fuels
Studied as possible alternatives to the use of fossil fuels

Fast Pyrolysis Bio Oil

Broumand et al. Progress in Energy and Combustion Science (2020)
Edoardo Cipriano – BGUM 2023



Fuel Produced From Waste
Is an interesting idea, but they do not burn well due to the high number of chemical species

Albert-Green et al. Biomass and Bioenergy (2018)

Homogeneous Combustion
Of volatile components

Heterogeneous Combustion
Of solid carbonaceous residuals
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Understanding the Behavior of Isolated Droplets

Sankaranarayanan et al.  Fuel (2019)

1. Neglect Interactions
Between the different droplets that compose the spray.
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Understanding the Behavior of Isolated Droplets

Sankaranarayanan et al.  Fuel (2019)

2. Refine Understanding
Of the evaporation and combustion processes.
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Understanding the Behavior of Isolated Droplets

Sankaranarayanan et al.  Fuel (2019)

3. Sub-Grid-Scale Models
For Spray combustion simulations using less detailed models (i.e. Euler-Lagrange).
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Develop a Numerical Model
For the Evaporation and Combustion
Of Multicomponent Droplets
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Numerical Model
VOF-Based CFD Model02
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Transport of the Interface

Solving an advection equation on the volume 
fraction field: 

𝜕𝑐
𝜕𝑡
+ ∇ ⋅ 𝑐𝒖 = −

𝑚̇
𝜌!
𝛿"

Numerical Model: Geometric Volume-Of-Fluid

Evaporation Term 
Removes Liquid
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Numerical Model: Geometric Volume-Of-Fluid

Transport of the Interface

Solving an advection equation on the volume 
fraction field: 

𝜕𝑐
𝜕𝑡
+ ∇ ⋅ 𝑐𝒖 = −

𝑚̇
𝜌!
𝛿"

𝜕𝑐
𝜕𝑡
+ ∇ ⋅ [𝑐 𝒖 + 𝒖𝚪 ] = 0

Interface Regression 
Velocity

Flux of liquid fraction (grey area)
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Numerical Model: Pressure-Velocity Coupling

Navier-Stokes Equations

For variable density incompressible flows with phase change:

𝜌
𝜕𝒖
𝜕𝑡
+ 𝛻 2 𝒖⨂𝒖 = 𝜇𝛻 2 𝛻𝒖 + 𝛻$𝒖 − 𝛻𝑝 + 𝜌𝒈 + 𝜎𝜅𝒏𝜞𝛿&

𝛻 2 𝒖 = 𝑚̇
1
𝜌!
−
1
𝜌'

𝛿&

Expansion Due to the Phase Change
(Responsible for the Stefan flow)

Discontinuity in the Velocity Field

Avedisian C.T., et al, Journal of Propulsion and Power (2000)

Surface Tension Force
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Numerical Model: Pressure-Velocity Coupling

Navier-Stokes Equations

For variable density incompressible flows with phase change:
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𝛿& Surface Tension Force
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Expansion Due to the Phase Change
(Responsible for the Stefan flow)

Discontinuity in the Velocity Field



Numerical Model: Pressure-Velocity Coupling

Double Pressure-Velocity Coupling

Solve another set of Navier-Stokes Equations that do not 
contain the volume expansion contribution

𝜌
𝜕𝒖𝑬

𝜕𝑡 + 𝛻 ' 𝒖𝑬⨂𝒖𝑬 = 𝜇𝛻 ' 𝛻𝒖𝑬 + 𝛻"𝒖𝑬 − 𝛻𝑝# + 𝜌𝒈 + 𝜎𝜅𝒏𝜞𝛿%

𝛻 ' 𝒖𝑬 = 0

Divergence-free “extended” velocity 𝒖!
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Numerical Model: Pressure-Velocity Coupling

Velocity-Potential Approach

Construct a velocity field 𝑢( whose divergence is 
the expansion term. 

∇)𝜙 = 𝑚̇
1
𝜌'
−
1
𝜌!

𝛿"

𝑢( = −∇𝜙

We subtract this term from the field velocity:
𝒖𝑬 = 𝒖 − 𝒖𝑺

Solid Wall
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Numerical Model: Solution of Scalar Fields
Temperature and Chemical Species Mass Fractions are considered as VOF-tracers (𝑡, = 𝑐𝜔,). We 
solve them using a two-field approach, splitting advection, diffusion, and reaction terms.

𝜕𝜔>,@
𝜕𝑡

+ 𝑢 ⋅ ∇𝜔> = ∇ ⋅ 𝜌@𝑐𝐷∇𝜔>,@ +
𝑚̇,

𝜌@
𝛿A −

𝑚̇-.-

𝜌@
𝛿A𝜔>,@ +0

BCD

EF

𝑅B𝜈>B

Edoardo Cipriano – BGUM 2023

Diffusion and Phase ChangeAdvection
Reactions



Numerical Model: Solution of Scalar Fields
Temperature and Chemical Species Mass Fractions are considered as VOF-tracers (𝑡, = 𝑐𝜔,). We 
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Advection



Numerical Model: Solution of Scalar Fields
Temperature and Chemical Species Mass Fractions are considered as VOF-tracers (𝑡, = 𝑐𝜔,). We 
solve them using a two-field approach, splitting advection, diffusion, and reaction terms.
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Diffusion and Phase Change

fracface.h from Lopez’ sandbox (Gennari 3D extension)



Numerical Model: Solution of Scalar Fields
Temperature and Chemical Species Mass Fractions are considered as VOF-tracers (𝑡, = 𝑐𝜔,). We 
solve them using a two-field approach, splitting advection, diffusion, and reaction terms.
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Reactions

Batch Reactor 
(unsteady perfectly stirred 

vessel with reactions)



Numerical Model: Interface Jump Condition
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Non-Linear System

Of equations in every interfacial cell:
Computes the vaporization rate of 
every chemical species:

o Mass Balance
o Energy Balance
o Thermodynamic Equilibrium
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Numerical Model: Interface Jump Condition

Interface Gradients Calculation

For the diffusive fluxes (Fick and Fourier 
Laws), we exploit a 6-points scheme 
adapted from the Embedded Boundary 
Method. Fundamental for the correct solution 
of the system:

𝜕𝑓
𝜕𝒏𝚪

= 𝑐
𝑓" − 𝑓/
𝑑/

+ 1 − 𝑐
𝑓" − 𝑓0
𝑑0

Bothe, D., & Fleckenstein, S. Chemical Engineering 
Science (2013)
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Numerical Results
Ø Constant Properties Validation
Ø Non-Constant Properties Simulations

03
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Validation: Fixed Flux Evaporation of a Liquid Droplet
Evaporation of a liquid droplet with a constant vaporization flowrate, the mass balance on the 
liquid droplet is the analytic solution to the problem: 12

1-
= 4̇

5!

Edoardo Cipriano – BGUM 2023 Malan et al. Journal of Computational Physics (2021)



Validation: Fixed Flux Evaporation of a Liquid Droplet
Evaporation of a liquid droplet with a constant vaporization flowrate, the mass balance on the 
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Validation: Stefan Problem
Evaporation of a liquid plane, induced by a temperature gradient between a hot wall and a vapor 
layer in contact with the liquid (Ja=0.5).

Solid Wall

Initial Vapor Layer
Liquid 
Phase

Temperature

Edoardo Cipriano – BGUM 2023 Malan et al. Journal of Computational Physics (2021)



Validation: Stefan Problem
Evaporation of a liquid plane, induced by a temperature gradient between a hot wall and a vapor 
layer in contact with the liquid (Ja=0.5).
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Validation: Scriven Problem
Growth of a bubble in a superheated liquid (Ja = 3). 

Superheated Liquid

Bubble at saturation temperature

Temperature
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Tanguy et al. Journal of Computational Physics (2014)



Validation: Scriven Problem
Growth of a bubble in a superheated liquid (Ja = 3). 
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Validation: Non-Isothermal Evaporation of a N-Heptane Droplet
Evaporation of a n-heptane droplet in a non-isothermal environment. The material properties are 
assumed to be constant in space and time during the entire simulation.

Mass FractionTemperature

Edoardo Cipriano – BGUM 2023 Pathak et al. International Journal of Heat and Mass Transfer (2018)



Validation: Non-Isothermal Evaporation of a N-Heptane Droplet
Evaporation of a n-heptane droplet in a non-isothermal environment. The material properties are 
assumed to be constant in space and time during the entire simulation.
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Validation: Non-Isothermal Evaporation of a N-Heptane Droplet
Evaporation of a n-heptane droplet in a non-isothermal environment. The material properties are 
assumed to be constant in space and time during the entire simulation.
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Results: Combustion of a N-Heptane Droplet
Combustion of a n-heptane droplet in microgravity: experiment on the International Space Station.

Mesh Refinement

N-Heptane Temperature

CO2

Edoardo Cipriano – BGUM 2023 Dietrich et al. Microgravity Science and Technology (2014)



Results: Combustion of a N-Heptane Droplet
Combustion of a n-heptane droplet in a non-isothermal with constant properties and a global 
kinetic scheme.

Mesh Refinement

N-Heptane Temperature

CO2
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Results: Combustion of a N-Heptane Droplet
Combustion of a n-heptane droplet in a non-isothermal with constant properties and a global 
kinetic scheme:                         𝑛𝐶6𝐻07 + 11𝑂) ⇒ 7𝐶𝑂) + 8𝐻)𝑂
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Results: Combustion of a N-Heptane Droplet
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Combustion of a n-heptane droplet in a non-isothermal with constant properties and a global 
kinetic scheme:                         𝑛𝐶6𝐻07 + 11𝑂) ⇒ 7𝐶𝑂) + 8𝐻)𝑂



Numerical Model: Variable Properties Formulation

We introduce and equation of state:
𝜌 = 𝐸𝑜𝑆 𝑇, 𝑃, 𝒙

The continuity equation is corrected in order to consider density changes:

∇ ⋅ 𝒖 = −
𝛽
𝜌𝑐!

∇ ⋅ 𝜆∇𝑇 + 𝑚̇
1
𝜌"
−
1
𝜌#

𝛿$

The scalar fields equations are re-written in a conservative form:
𝜕 𝜌𝑐𝜔%,#

𝜕𝑡 + ∇ ⋅ 𝜌𝑐𝜔%,#𝒖 = ∇ ⋅ 𝜌𝐷𝑐∇𝜔%,# − 𝑚̇%
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Wang Y., et al Journal of Computational Physics (2019)



Results: N-Heptane Microgravity Droplet Evaporation

Nomura H., et al Symposium (International) on 
Combustion (1996)

D0 0.7 mm - P 0.1 MPa
Effect of the Ambient Temperature

Mass Fraction

Temperature
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Results: Suspended Droplets in Normal Gravity Conditions

Pinning Point

Contact Angle 𝜽 𝒕
Gravity

Solid Fiber

We suspend the droplet setting the height-function boundary conditions.

AX
I

Edoardo Cipriano – BGUM 2023 Again, thank you J.M. Lopez and S. Popinet



Results: Suspended N-Heptane Droplet Evaporation

D0 1mm - P 0.1MPa – T 973K
TemperatureMass Fraction

Thermal 
Expansion

Constant 
Vaporization Rate

Ghassemi H., et al, Combustion science and technology (2006)
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Results: Suspended N-Heptane Droplet Evaporation
Mass Fraction Temperature D0 1mm - P 1MPa – T 973K

ü Stronger Wake

High P

Low P
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Ghassemi H., et al, Combustion science and technology (2006)



Results: Suspended N-Heptane/N-Hexadecane Droplet Evaporation
D0 1mm - P 1MPa – T 773K

ü Preferential Vaporization
ü Accumulation of the heavy species
ü Double saddle behavior
ü Liquid Phase internal recirculation

N-Heptane N-Hexadecane Temperature

N-Hexadecane 
Evaporation

N-Heptane 
Evaporation

Thermal 
Expansion

C7 Fully Consumed

Thermal 
Expansion
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Check Out the Codes on the Basilisk websites
http://basilisk.fr/sandbox/ecipriano/

Edoardo Cipriano – BGUM 2023

bubblecontact.c

staticbi.c



Thank you for your attention
(edoardo.cipriano@polimi.it)
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