

MILANO 1863

Modelling Evaporation and Combustion of Fuel Droplets Using Basilisk

Edoardo Cipriano

BGUM 2023 – Basilisk (Gerris) Users' Meeting 5-7th July, Paris

POLITECNICO MILANO 1863

Motivation Motivation and Aim of the Work

Edoardo Cipriano – BGUM 2023

01

Alternative Liquid Fuels

Studied as possible alternatives to the use of fossil fuels

Broumand et al. Progress in Energy and Combustion Science (2020)

Fuel Produced From Waste

Is an interesting idea, but they **do not burn well** due to the high number of chemical species

Albert-Green et al. Biomass and Bioenergy (2018)

Understanding the Behavior of Isolated Droplets

1. Neglect Interactions

Between the different droplets that compose the spray.

Sankaranarayanan et al. Fuel (2019)

Understanding the Behavior of Isolated Droplets

2. Refine Understanding

Of the evaporation and combustion processes.

Sankaranarayanan et al. Fuel (2019)

Understanding the Behavior of Isolated Droplets

3. Sub-Grid-Scale Models

For Spray combustion simulations using less detailed models (i.e. Euler-Lagrange).

Sankaranarayanan et al. Fuel (2019)

POLITECNICO

Develop a Numerical Model For the Evaporation and Combustion Of Multicomponent Droplets

MILANO 1863

02

Numerical Model VOF-Based CFD Model

Numerical Model: Geometric Volume-Of-Fluid

Transport of the Interface

Solving an advection equation on the volume fraction field:

Numerical Model: Geometric Volume-Of-Fluid

Transport of the Interface

Solving an advection equation on the volume fraction field:

Flux of liquid fraction (grey area)

Avedisian C.T., et al, Journal of Propulsion and Power (2000)

Navier-Stokes Equations

ρ

For variable density incompressible flows with phase change:

$$\left(\frac{\partial \boldsymbol{u}}{\partial t} + \nabla \cdot (\boldsymbol{u} \otimes \boldsymbol{u})\right) = \mu \nabla \cdot (\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u}) - \nabla p + \rho \boldsymbol{g} + \sigma \kappa \boldsymbol{n}_{\Gamma} \delta_{\Gamma}$$

$$\nabla \cdot \boldsymbol{u} = \dot{m} \left(\frac{1}{\rho_l} - \frac{1}{\rho_g}\right) \delta_{\Gamma}$$

Surface Tension Force
(Responsible for the Phase Change
(Responsible for the Stefan flow)
Discontinuity in the Velocity Field

Navier-Stokes Equations

For variable density incompressible flows with phase change:

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \nabla \cdot (\boldsymbol{u} \otimes \boldsymbol{u})\right) = \mu \nabla \cdot (\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u}) - \nabla p + \rho \boldsymbol{g} + \sigma \kappa \boldsymbol{n}_{\Gamma} \delta_{\Gamma}$$

$$\nabla \cdot \boldsymbol{u} = \dot{m} \left(\frac{1}{\rho_l} - \frac{1}{\rho_g}\right) \delta_{\Gamma}$$

Surface Tension Force
Expansion Due to the Phase Change
(Responsible for the Stefan flow)
$$\downarrow$$

Discontinuity in the Velocity Field

Double Pressure-Velocity Coupling

Solve another set of Navier-Stokes Equations that do not contain the volume expansion contribution

$$\rho\left(\frac{\partial \boldsymbol{u}^{E}}{\partial t} + \nabla \cdot \left(\boldsymbol{u}^{E} \otimes \boldsymbol{u}^{E}\right)\right) = \mu \nabla \cdot \left(\nabla \boldsymbol{u}^{E} + \nabla^{T} \boldsymbol{u}^{E}\right) - \nabla p^{E} + \rho \boldsymbol{g} + \sigma \kappa \boldsymbol{n}_{\Gamma} \delta_{\Gamma}$$
$$\nabla \cdot \boldsymbol{u}^{E} = 0$$

Divergence-free "extended" velocity u^E

Velocity-Potential Approach

Construct a velocity field u^S whose divergence is the expansion term.

$$\begin{cases} \nabla^2 \phi = \dot{m} \left(\frac{1}{\rho_g} - \frac{1}{\rho_l} \right) \delta_{\Gamma} \\ u^S = -\nabla \phi \end{cases}$$

We subtract this term from the field velocity: $u^E = u - u^S$

Temperature and Chemical Species Mass Fractions are considered as VOF-tracers ($t_i = c\omega_i$). We solve them using a **two-field approach**, splitting advection, diffusion, and reaction terms.

$$\frac{\partial \omega_{i,l}}{\partial t} + u \cdot \nabla \omega_{i} = \nabla \cdot \left(\rho_{l} c D \nabla \omega_{i,l}\right) + \frac{\dot{m}_{i}}{\rho_{l}} \delta_{\Gamma} - \frac{\dot{m}_{tot}}{\rho_{l}} \delta_{\Gamma} \omega_{i,l} + \sum_{\substack{j=1\\j=1\\ \text{Reactions}}}^{NR} R_{j} v_{ij}$$

Temperature and Chemical Species Mass Fractions are considered as VOF-tracers ($t_i = c\omega_i$). We solve them using a **two-field approach**, splitting advection, diffusion, and reaction terms.

$$\frac{\partial \omega_{i,l}}{\partial t} + u \cdot \nabla \omega_{i} = \nabla \cdot \left(\rho_{l} c D \nabla \omega_{i,l}\right) + \frac{\dot{m}_{i}}{\rho_{l}} \delta_{\Gamma} - \frac{\dot{m}_{tot}}{\rho_{l}} \delta_{\Gamma} \omega_{i,l} + \sum_{j=1}^{NR} R_{j} \nu_{ij}$$
Advection

Temperature and Chemical Species Mass Fractions are considered as VOF-tracers ($t_i = c\omega_i$). We solve them using a **two-field approach**, splitting advection, diffusion, and reaction terms.

$$\frac{\partial \omega_{i,l}}{\partial t} + u \cdot \nabla \omega_i = \nabla \cdot \left(\rho_l c D \nabla \omega_{i,l}\right) + \frac{\dot{m}_i}{\rho_l} \delta_{\Gamma} - \frac{\dot{m}_{tot}}{\rho_l} \delta_{\Gamma} \omega_{i,l} + \sum_{j=1}^{NR} R_j v_{ij}$$

Edoardo Cipriano – BGUM 2023

fracface.h from Lopez' sandbox (Gennari 3D extension)

Temperature and Chemical Species Mass Fractions are considered as VOF-tracers ($t_i = c\omega_i$). We solve them using a **two-field approach**, splitting advection, diffusion, and reaction terms.

ND

$$\frac{\partial \omega_{i,l}}{\partial t} + u \cdot \nabla \omega_{i} = \nabla \cdot \left(\rho_{l} c D \nabla \omega_{i,l}\right) + \frac{\dot{m}_{i}}{\rho_{l}} \delta_{\Gamma} - \frac{\dot{m}_{tot}}{\rho_{l}} \delta_{\Gamma} \omega_{i,l} + \sum_{\substack{j=1\\ \text{Reactions}}}^{NN} R_{j} v_{ij}$$

$$\frac{\partial \omega_{i,l}}{\partial t} + \frac{\partial \omega_{i,l}$$

Numerical Model: Interface Jump Condition

Non-Linear System

Of equations in every interfacial cell: Computes the vaporization rate of every chemical species:

- Mass Balance
- Energy Balance
- Thermodynamic Equilibrium

Numerical Model: Interface Jump Condition

Bothe, D., & Fleckenstein, S. Chemical Engineering Science (2013)

Interface Gradients Calculation

For the diffusive fluxes (Fick and Fourier Laws), we exploit a 6-points scheme adapted from the <u>Embedded Boundary</u> <u>Method</u>. Fundamental for the correct solution of the system:

$$\left(\frac{\partial f}{\partial \boldsymbol{n}_{\Gamma}}\right) = \left(c\frac{f_{\Gamma} - f_{0}}{d_{0}} + (1 - c)\frac{f_{\Gamma} - f_{1}}{d_{1}}\right)$$

MILANO 1863

03 NL

Numerical Results

- Constant Properties Validation
- Non-Constant Properties Simulations

Validation: Fixed Flux Evaporation of a Liquid Droplet

Evaporation of a liquid droplet with a constant vaporization flowrate, the mass balance on the liquid droplet is the analytic solution to the problem: $\frac{dR}{dt} = \frac{\dot{m}}{\rho_l}$

Edoardo Cipriano – BGUM 2023

Malan et al. Journal of Computational Physics (2021)

Validation: Fixed Flux Evaporation of a Liquid Droplet

Evaporation of a liquid droplet with a constant vaporization flowrate, the mass balance on the liquid droplet is the analytic solution to the problem: $\frac{dR}{dt} = \frac{\dot{m}}{\rho_l}$

Validation: Stefan Problem

Evaporation of a liquid plane, induced by a temperature gradient between a hot wall and a vapor layer in contact with the liquid (Ja=0.5).

Edoardo Cipriano – BGUM 2023

Malan et al. Journal of Computational Physics (2021)

Validation: Stefan Problem

Evaporation of a liquid plane, induced by a temperature gradient between a hot wall and a vapor layer in contact with the liquid (Ja=0.5).

Edoardo Cipriano – BGUM 2023

Validation: Scriven Problem

Growth of a bubble in a superheated liquid (Ja = 3).

Bubble at saturation temperature

Edoardo Cipriano – BGUM 2023

Tanguy et al. Journal of Computational Physics (2014)

Validation: Scriven Problem

Growth of a bubble in a superheated liquid (Ja = 3).

Edoardo Cipriano – BGUM 2023

Validation: Non-Isothermal Evaporation of a N-Heptane Droplet

Evaporation of a n-heptane droplet in a non-isothermal environment. The material properties are assumed to be constant in space and time during the entire simulation.

Validation: Non-Isothermal Evaporation of a N-Heptane Droplet

Evaporation of a n-heptane droplet in a non-isothermal environment. The material properties are assumed to be constant in space and time during the entire simulation.

Validation: Non-Isothermal Evaporation of a N-Heptane Droplet

Evaporation of a n-heptane droplet in a non-isothermal environment. The material properties are assumed to be constant in space and time during the entire simulation.

Combustion of a n-heptane droplet in microgravity: experiment on the International Space Station.

Edoardo Cipriano – BGUM 2023

Dietrich et al. Microgravity Science and Technology (2014)

Combustion of a n-heptane droplet in a non-isothermal with constant properties and a global kinetic scheme.

Combustion of a n-heptane droplet in a non-isothermal with constant properties and a global kinetic scheme: $nC_7H_{16} + 11O_2 \Rightarrow 7CO_2 + 8H_2O$

Combustion of a n-heptane droplet in a non-isothermal with constant properties and a global kinetic scheme: $nC_7H_{16} + 11O_2 \Rightarrow 7CO_2 + 8H_2O$

Numerical Model: Variable Properties Formulation

We introduce and equation of state:

$$\rho = EoS(T, P, \mathbf{x})$$

The continuity equation is corrected in order to consider density changes:

$$\nabla \cdot \boldsymbol{u} = -\frac{\beta}{\rho c_p} \nabla \cdot (\lambda \nabla T) + \dot{m} \left(\frac{1}{\rho_g} - \frac{1}{\rho_l}\right) \delta_{\Gamma}$$

The scalar fields equations are re-written in a <u>conservative form</u>: $\frac{\partial (\rho c \omega_{i,l})}{\partial t} + \nabla \cdot (\rho c \omega_{i,l} \boldsymbol{u}) = \nabla \cdot (\rho D c \nabla \omega_{i,l}) - \dot{m}_i$

Results: N-Heptane Microgravity Droplet Evaporation

D₀ 0.7 mm - P 0.1 MPa Effect of the Ambient Temperature

Nomura H., et al *Symposium (International) on Combustion* (1996)

Results: Suspended Droplets in Normal Gravity Conditions

We suspend the droplet setting the height-function boundary conditions.

Results: Suspended N-Heptane Droplet Evaporation

Ghassemi H., et al, Combustion science and technology (2006)

Results: Suspended N-Heptane Droplet Evaporation

Ghassemi H., et al, Combustion science and technology (2006)

Results: Suspended N-Heptane/N-Hexadecane Droplet Evaporation

--- P=1MPa

N-Hexadecane

Evaporation

2.5

Check Out the Codes on the Basilisk websites http://basilisk.fr/sandbox/ecipriano/

bubblecontact.c

staticbi.c

MILANO 1863

Thank you for your attention

(edoardo.cipriano@polimi.it)