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Background/Motivation  
Google images 

Mark 48 Torpedo                                                    Lunar Excursion Module SpaceX Merlin Rocket Engine  

Garden Hose, Monopropellant pintle injector   SpaceX raptor engine bipropellant pintle injector cold flow test    
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Current Status and Objectives 
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Objectives: 

• Identify the fundamental mechanisms underlying the injector dynamics and 

atomization behaviors of liquid monopropellants in pintle injectors 

• Quantitatively investigate the droplet size distributions and their temporal and 

spatial evolution 

• Conduct parametric studies to investigate these behaviors at a wide range of 

Weber numbers and operating pressures 

 

Current Status and unresolved research issues: 
• Limited research exists on the fundamental mechanisms underlying the 

monopropellant pintle injector dynamics and atomization behaviors  

 

• Most research is dedicated to bipropellant engines.  
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Multiphase & Multiscale Challenges 
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• Discontinuity of material properties at the interface 

• Surface tension singularity force active only at the interface 

• Frequent topology changes 

multiphase 

multiscale • Time and length scales vary over several orders of magnitude 
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Governing Equations: Volume-
of-Fluid Method (VOF) 

•  Incompressible, variable-density, Navier-Stokes equations: 

 

 

 

 

 

•  Volume fraction, two-phase fluid density and viscosity: 

 

 

 

•  Advection for volume fraction: 
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Adaptive Mesh Refinement (AMR) 

• Gradient and value based refinement 

• Cells without AMR 5.49 × 1012 

• Cells with AMR = 28.623 million 

• Total reduction = 99.47% 

• Min. cell size = 0.305µm 

Adaptive Mesh Refinement (AMR) 



Department of Aerospace Engineering & Engineering Mechanics 

    

Validation Of The Model  

• Model validation will be based upon the work of Vlad Petrescu   

• The model validation will be three faceted comparing  

• Spray Angle 

• Sauter mean diameter  

• Physical inspection  
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Physical Properties  Water (1.6psi) 
Chamber gas (air 

atmospheric)  

Density, ρ (kg/m3) 1000 1.28 

Viscosity, μ (Pa∙s) 9.532x10-4 1.822x10-5 

Surface Tension, σ N/m) 0.07275 

Model geometry 

Experimental geometry 

Atomized spray properties in pintle injection , Petrescu, Schrijer and Zandbergen 
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Qualitative comparison with 
experimental measurements 
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                        20mm        40mm      55mm     70mm 

From the Experiment   

Liquid sheet  

Ligaments   

Droplet formation   

Atomized spray properties in pintle injection , Petrescu, Schrijer and Zandbergen 
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Validation: SMD and spray angle comparison with 
experiment  

Location 

from 

injector 

SMD from 

experiment 

(µm) 

SMD from 

present 

calculations 

(µm) 

% error 

60 mm 
1291.32 1273.74 1.36% 

65 mm 1194.56 1242.79 -4.04% 

70 mm 
1104.14 1101.92 0.20% 
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60mm 70mm 
Experimental Present 

Calculations   

% error 

Spray 

angle  

31.0 29.7 4.2% 

Atomized spray properties in pintle injection , Petrescu, Schrijer and Zandbergen 
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Otto Fuel II Chamber gas  

Density, ρ (kg/m3) 1232 123.2 

Viscosity, μ (Pa∙s) 0.44 2.0764 x 10-7 

Surface Tension, σ N/m) 0.03445 

Physical Properties and Geometry 

no-slip boundary condition 

3.34m/s
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3-D VOF  

Pintle Injector Atomization at 
We=20 
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Pintle Injector Atomization at 
We=20 
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Side View  

Detailed Physics: Ligament Formation 3-D 
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non-dimensionalized time, t = t*/(d/Uj ) = 0.0 - 0.11 

Side View  
Axial view  
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2-D center plane slice  

Detailed Physics: Ligament Formation 2-D  

Tracer VOF  

1.0 

0.5 

0.0 

non-dimensionalized time, t = t*/(d/Uj ) = 0.0 - 0.11 
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non-dimensionalized time, t = t*/(d/Uj ) = 0.11- 0.21 

Detailed Physics: First break-up 3-D 

Axial view  

Gamertsfelder & Khare/UC 

3-D View  
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Tracer VOF  

1.0 

0.5 

0.0 

Detailed Physics: First break-up 2-D 

non-dimensionalized time, t = t*/(d/Uj ) = 0.11- 0.21 

2-D center plane slice  
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Detailed Physics: Sheet Sheering and 
Break-up  

Gamertsfelder & Khare/UC 

non-dimensionalized time 

t = t*/(d/Uj ) = 0.22 - 0.90 

non-dimensionalized time 

t = t*/(d/Uj ) = 0.19 

3-D VOF - Outside  3-D VOF -Inside  
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non-dimensionalized time, t = t*/(d/Uj ) = 0.50 - 1.00 

2-D Center Plane Slice 3-D VOF 

Detailed Physics: Appearance of Kelvin-
Helmholtz Instabilities  

Gamertsfelder & Khare/UC 
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2-D 

center 

slice  

2-D Vorticity slice  

Detailed Physics: Droplet Recirculation  
Vortex Formation   

Gamertsfelder & Khare/UC 17 

 

non-dimensionalized time t = t*/(d/Uj ) = 1.24 – 1.40 



Department of Aerospace Engineering & Engineering Mechanics 

    21 Khare/UC 

3-D VOF 

non-dimensionalized time, 

t = t*/(d/Uj ) = 1.64 

Detailed Physics: Clumping and Droplet 
Coalescence Hinders Atomization    

Gamertsfelder & Khare/UC 

2-D Tracer Iso-line  
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Droplet Production Changes with Time  

Khare/UC 17 Gamertsfelder & Khare/UC 22 
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Droplet Production in terms of Probability  
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Sauter Mean Diameter  

Khare/UC 21 Gamertsfelder & Khare/UC 
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Conclusion 

• High-fidelity numerical simulations were conducted to  

quantitatively identify the atomization of 

monopropellant pintle injectors was investigated  

• By the formation of recirculation zones slowing the 

flow in the U direction. 

• By the ligaments breaking inwards leading to formation 

of larger droplets    

• Droplet distribution analysis shows that droplet 

coalescences increaces the overall sauter mean 

diameter  

• Droplet distribution analysis also shows an Gaussian  

droplet distribution with a slowing production rate due 

to droplet coalescence  
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 Future Investigations 

 

• Investigate and quantify the differences in breakup 

and droplet distribution for different Weber numbers 

and operating pressures  

• Determine the effect of pintle angle and location on 

droplet distribution  
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Questions? 
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Back-up  
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Sauter Mean diameter Comparison  
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Distance from the Pintle injector in mm 

Extrapolated Sauter mean diameter from emperical equation  

Experimental Values

Model Values

Atomized spray properties in pintle injection , Petrescu, Schrijer and Zandbergen 
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Spray Angle Comparison  
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Model had a 31 degree half spray angle measured at 10mm   

Atomized spray properties in pintle injection , Petrescu, Schrijer and Zandbergen 


