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Particle laden flow with basilisk
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Fictitious domain method: principle

Consider a domain Ω with boundaries Γ1, ..., Γ4 filled with
(Newtonian) fluid and an (homogeneous) solid particle occupying
the domain P (t) with boundary ∂P(t):

fluid domain: Ω\P (t)

solid domain: P (t) with
boundary ∂P (t)

Reference: (Glowinski et al., 1999).
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Fictitious domain method: starting point (in strong form)

- combined-equations of motion with Lagrange multipliers λ:

ρL

(
∂u
∂t + (u ·∇) u

)
= −∇p + ∇ · (2µD)− λ in Ω,

(
1− ρL

ρs

)(
M
(dU

dt − g
))

=
∫

P(t)
λ dx in P(t),

(
1− ρL

ρs

)(
I dω

dt + ω × Iω
)

=
∫

P(t)
r × λ dx in P(t)

u − (U + ω × r) = 0 over P(t)

- continuity equation

−∇ · u = 0 over Ω

- unknowns: u, p,U,ω,λ
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Operator splitting

The process can be seen as a particular initial value problem:

dφ
dt + NS (φ) + Gra (φ) + Fd (φ) = f

φ(t = 0) = φ0.

Split in 3 and solve successively (Glowinski et al., 1999):

φn+1/3 − φn

∆t + NS
(
φn+1/3

)
= f n+1

1 ,

φn+2/3 − φn+1/3

∆t + Gra
(
φn+2/3

)
= f n+1

2 ,

φn+1 − φn+2/3

∆t + Fd
(
φn+1

)
= f n+1

3 ,

with f n+1
1 + f n+1

2 + f n+1
3 = f ((n + 1)∆t) .
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Operator splitting

Pros:
• Flexible for the choice of each sub-problem’s solvers: use any

available solver in your group/internet.
• Relatively easy to implement
• Robust (stable) and preserves stationnary solutions

(MacNamara and Strang, 2016)
Cons:

• First order accurate only
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Validation: Stokes flow through a periodic array of spheres

Tri-periodic domain. Flow initially at rest, motion imposed with a
pressure gradient.

streamwise velocity

Drag coefficint K , D diameter, φ
concentration, V superficial
velocity

Fi = 3πµDKVi

D/2 = (3φ/4π)1/3

Vi = 1
τ0

∫∫∫
Ω/P

ui (x)dx

Zick and Homsy (1982)
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zick.mp4
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Validation: Stokes flow through a periodic array of spheres
Validation of octrees with constant 26 cells per direction.
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Basilisk cut-cell-6-levels

Drag coefficient K as a function of the concentration φ.
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Validation: Stokes flow through a periodic array of spheres

First order convergence rate in space and time.
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Validation: Flow past a sphere, adaptive meshes

Flow past a sphere at 50 ≤ Re ≤ 250 with N = 9, . . . , 13 level of
refinement (34− 136 points per diameter). Box size L/D = 30.
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Validation: Flow past a sphere, adaptive meshes

Comparison of the drag coefficient K (Re) against previous works.
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Validation: Flow past a sphere, adaptive meshes

Spatial convergence rate: ranging from 1.04 to 1.34.
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Validation: flow past a cylinder at Re = 9500

15 level of refinement, domain size L/D = 18, resolution
215/18 ∼ 1820pts/D. Equivalent cartesian grid 230 ∼ 109cells

Axial vorticity ωz (t) Animation of the mesh
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cylinder-9500-omega.mp4
Media File (video/mp4)


cylinder-9500-mesh.mp4
Media File (video/mp4)



Validation: flow past a cylinder at Re = 9500

Comparison with respect to other codes/papers/techniques:
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Surface vorticty at t = 2.5

More at http://basilisk.fr/sandbox/cselcuk/starting-dlmfd.c
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Two moving spheres in creeping shear flow

~r : inter-particle distance
a: sphere’s radius

”Analytical” solution:

drx
dt = ry + erx −

B (~r)
2 ry ,

dry
dt = ery −

B (~r)
2 rx ,

drz
dt = erz ,

where

e = rx ry (B (~r)− A (~r))
~r2 ,

(Batchelor and Green, 1972) and (Lin et al., 1970)
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Two moving spheres in creeping shear flow

Time-step ∆t = 1/3000:
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Two moving cylinders in creeping shear flow

2D: Time-step ∆t = 1/3000, mesh size D/∆ ∼ 200, 11 levels of
refinnement

refinement criterion on ~u and the
color field

refinement criterion only on the
color field
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2D-lub-full-mesh.mp4
Media File (video/mp4)


2-lub-restricted.mp4
Media File (video/mp4)



Attempt to capture lubrication forces: preliminary
conclusion

Globally encouraging results:
• Lubrication force almost fully captured by brute-forcing
• No contact and sub-grid models
• Robust even when particles overlap
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Dynamic of multiple particles with Grains 3D

Coupling with Grains3D as granular solver (C++ code) with
Basilisk’s Navier-Stokes solver (C code).
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three_cubes_sphere_rho_ratio_8_falling.mp4
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Dynamic of a free falling cube, ρs/ρs = 7, Ga = 140
Box size L/D = 700, (equivalent) spatial resolution ∼ 25pts/D.
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cubeL700D.mp4
Media File (video/mp4)



Dynamic of cluster of (600) particles at Re = 15

Simulations performed by Daniel Oliveira (L.S.U)

Basilisk dlmfd + grain3D Experiments by (Pignatel et al.,
2011)
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Re15-600p.mp4
Media File (video/mp4)


Re15-600p-exp.mp4
Media File (video/mp4)



Thank you

Thank you for your attention !

More on my sandbox at: http://basilisk.fr/sandbox/cselcuk/
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The first, Navier-Stokes problem

Basilisk’s global temporal-scheme for the Navier-Stokes problem
reads: given un,λn, find un+1/2, pn+1/2 such that:

un+1/2 − un

∆t = − [u ·∇u]n+1/4 + 1
ρf

[
∇ ·

(
2µDn+1/2

v
[
un+1/2

])
−∇pn+1/2

]
− λn,

∇ · un+1/2 = 0.

Solved with a modified version of the projection scheme proposed
by (Bell et al., 1989).
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The second, granular problem

The second sub-problem is a pure granular problem which reads:
given Un

i ,ω
n
i find Un+1/2

i ,ω
n+1/2
i such that

(
1− ρf

ρs

)
M
(

Un+1/2 −Un

∆t

)
=
(

1− ρf
ρs

)
Mg + Fc

(
1− ρf

ρs

)
I
(
ωn+1/2 − ωn

∆t

)
= −

(
1− ρf

ρs

)
ωn × Iωn + Tc.

Can be solved with any granular solver that handles contact forces
and torques for multiple particles.
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The third, fictitious-domain problem

The fictitious-domain problem reads: given un+1/2, λn, Un+1/2,
ωn+1/2 solve

ρf

(
un+1 − un+1/2

∆t

)
− λn+1 = λn over Ω

(
1− ρf

ρs

)(
M
[

Un+1 −Un+1/2

∆t

])
= −

∫
P(t)

λn+1 dx over P(t)

(
1− ρf

ρs

)(
I
(
ωn+1 − ωn+1/2

∆t

))
= −

∫
P(t)

r × λn+1 dx over P(t)

un+1 −
(
Un+1 + ωn+1 × r

)
= 0 over P(t).

Saddle-point problem solved with an iterative algorithm (Uwaza).

25 / 22



Interface reconstruction

Collocation point method: use of a Dirac delta function as basis
function for the Lagrange multipliers λ:

λ (x) =
L∑

l=1
λlδ (x − xl ) . (1)

with L the number of Lagrange multipliers.
Lagrange multiplier (L.m)
Constraint cells
Cell-center to L.m vector
2× 2-stencil nodes
Interface-normal vector
3× 3-stencil nodes
Fluid nodes
Boundary cells
Interior cells
Halo cells
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One sphere close to wall in Stokes flow

δ: gap distance
a: sphere’s radius

• Large box: L/a = 60
• Periodicity on front/back

and left/right faces
• ”Wall” for bottom/top faces
• fixed particle
• imposed velocity:
~U = (0,−Uc , 0), ~ω = ~0

• Tc = 2a/Uc

Analytical solution:

Fn/Fst = (δ/a)−1 − 1
5 log (δ/a) + 0.97128, (2)

(Brenner, 1961) and (Cooley and O’Neill, 1969)
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One sphere close to wall in Stokes flow
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One sphere close to wall: temporal convergence

case: δ/a = 0.4:

a/∆ ∼ 34, δ/∆ ∼ 25
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One sphere close to wall: temporal convergence

More challenging case: δ/a = 0.1:

a/∆ ∼ 34, δ/∆ ∼ 3
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a/∆ ∼ 68, δ/∆ ∼ 6
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