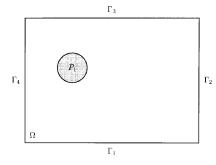
A fictitious domain method on Octrees/Basilisk

Can Selçuk, Anthony Wachs

University of British Columbia, Math department

17 june 2019

Consider a domain Ω with boundaries $\Gamma_1, ..., \Gamma_4$ filled with (Newtonian) fluid and an (homogeneous) solid particle occupying the domain P(t) with boundary $\partial P(t)$:



fluid domain: $\Omega \setminus \overline{P(t)}$

solid domain: P(t) with boundary $\partial P(t)$

Reference: (Glowinski et al., 1999).

Fictitious domain method: starting point (in strong form)

- combined-equations of motion with Lagrange multipliers λ :

$$\rho_L \left(\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \, \boldsymbol{u} \right) = -\boldsymbol{\nabla} \boldsymbol{p} + \boldsymbol{\nabla} \cdot (2\mu \boldsymbol{D}) - \boldsymbol{\lambda} \text{ in } \boldsymbol{\Omega},$$
$$\left(1 - \frac{\rho_L}{\rho_s} \right) \left(\boldsymbol{M} \left(\frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d} t} - \boldsymbol{g} \right) \right) = \int_{P(t)} \boldsymbol{\lambda} \, \mathrm{d} \boldsymbol{x} \text{ in } P(t),$$
$$\left(1 - \frac{\rho_L}{\rho_s} \right) \left(\boldsymbol{I} \frac{\mathrm{d} \boldsymbol{\omega}}{\mathrm{d} t} + \boldsymbol{\omega} \times \boldsymbol{I} \boldsymbol{\omega} \right) = \int_{P(t)} \boldsymbol{r} \times \boldsymbol{\lambda} \, \mathrm{d} \boldsymbol{x} \text{ in } P(t)$$
$$\boldsymbol{u} - (\boldsymbol{U} + \boldsymbol{\omega} \times \boldsymbol{r}) = 0 \text{ over } P(t)$$

- continuity equation

$$- \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$$
 over Ω

- unknowns: $oldsymbol{u}, oldsymbol{p}, oldsymbol{U}, oldsymbol{\omega}, oldsymbol{\lambda}$

The process can be seen as a particular initial value problem:

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} + \mathbf{NS}(\phi) + \mathbf{Gra}(\phi) + \mathbf{Fd}(\phi) = f$$

$$\phi(t = 0) = \phi_0.$$

Split in 3 and solve successively (Glowinski et al., 1999):

$$\begin{split} & \frac{\phi^{n+1/3} - \phi^n}{\Delta t} + \mathsf{NS}\left(\phi^{n+1/3}\right) = f_1^{n+1}, \\ & \frac{\phi^{n+2/3} - \phi^{n+1/3}}{\Delta t} + \mathsf{Gra}\left(\phi^{n+2/3}\right) = f_2^{n+1}, \\ & \frac{\phi^{n+1} - \phi^{n+2/3}}{\Delta t} + \mathsf{Fd}\left(\phi^{n+1}\right) = f_3^{n+1}, \end{split}$$

with $f_1^{n+1} + f_2^{n+1} + f_3^{n+1} = f((n+1)\Delta t)$.

Pros:

- Flexible for the choice of each sub-problem's solvers: use any available solver in your group/internet.
- Relatively easy to implement
- Robust (stable) and preserves stationnary solutions (MacNamara and Strang, 2016)

Cons:

• First order accurate only

Tri-periodic domain. Flow initially at rest, motion imposed with a pressure gradient.

Drag coefficint K, D diameter, ϕ concentration, V superficial velocity

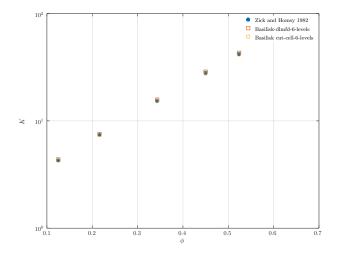
$$\begin{split} F_i &= 3\pi\mu D K V_i \\ D/2 &= (3\phi/4\pi)^{1/3} \\ V_i &= \frac{1}{\tau_0} \iiint_{\Omega/P} u_i(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \end{split}$$

Zick and Homsy (1982)

streamwise velocity

Validation: Stokes flow through a periodic array of spheres

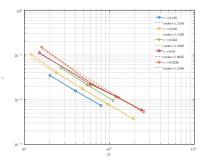
Validation of octrees with constant 2⁶ cells per direction.



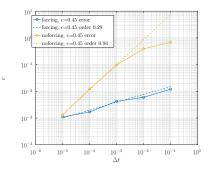
Drag coefficient K as a function of the concentration ϕ .

8 / 22

First order convergence rate in space and time.



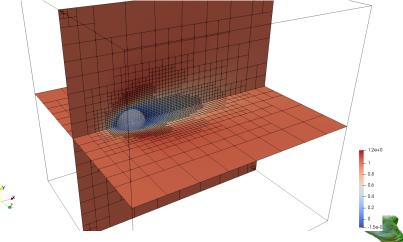
Spatial convergence



Temporal convergence

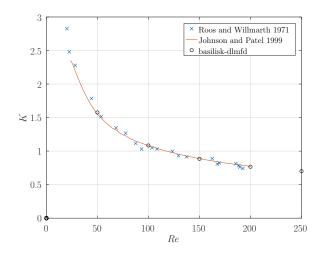
Validation: Flow past a sphere, adaptive meshes

Flow past a sphere at $50 \le Re \le 250$ with N = 9, ..., 13 level of refinement (34 - 136 points per diameter). Box size L/D = 30.



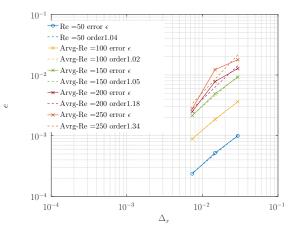
Validation: Flow past a sphere, adaptive meshes

Comparison of the drag coefficient K(Re) against previous works.



Validation: Flow past a sphere, adaptive meshes

Spatial convergence rate: ranging from 1.04 to 1.34.



Validation: flow past a cylinder at Re = 9500

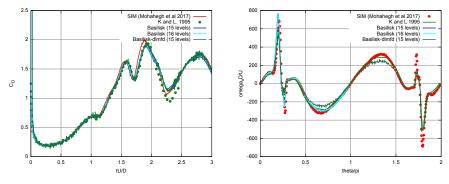
15 level of refinement, domain size L/D = 18, resolution $2^{15}/18 \sim 1820 pts/D$. Equivalent cartesian grid $2^{30} \sim 10^9$ cells

Axial vorticity $\omega_z(t)$

Animation of the mesh

Validation: flow past a cylinder at Re = 9500

Comparison with respect to other codes/papers/techniques:

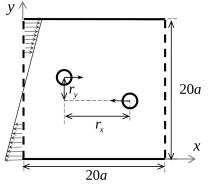


Drag coefficient C_D

Surface vorticty at t = 2.5

More at http://basilisk.fr/sandbox/cselcuk/starting-dlmfd.c

Two moving spheres in creeping shear flow



"Analytical" solution:

$$\begin{split} \frac{\mathrm{d}r_x}{\mathrm{d}t} &= r_y + er_x - \frac{B\left(\vec{r}\right)}{2}r_y, \\ \frac{\mathrm{d}r_y}{\mathrm{d}t} &= er_y - \frac{B\left(\vec{r}\right)}{2}r_x, \\ \frac{\mathrm{d}r_z}{\mathrm{d}t} &= er_z, \end{split}$$

where

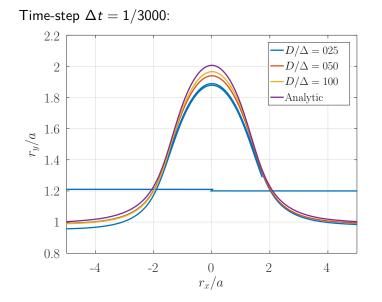
$$e = \frac{r_{x}r_{y}\left(B\left(\vec{r}\right) - A\left(\vec{r}\right)\right)}{\vec{r}^{2}},$$

 \vec{r} : inter-particle distance

a: sphere's radius

(Batchelor and Green, 1972) and (Lin et al., 1970)

Two moving spheres in creeping shear flow



Two moving cylinders in creeping shear flow

2D: Time-step $\Delta t = 1/3000,$ mesh size $D/\Delta \sim$ 200, 11 levels of refinnement

refinement criterion on \vec{u} and the color field

refinement criterion only on the color field

Attempt to capture lubrication forces: preliminary conclusion

Globally encouraging results:

- Lubrication force almost fully captured by brute-forcing
- No contact and sub-grid models
- Robust even when particles overlap

Dynamic of multiple particles with Grains 3D

Coupling with Grains3D as granular solver (C++ code) with Basilisk's Navier-Stokes solver (C code).

Dynamic of a free falling cube, $\rho_s/\rho_s = 7$, Ga = 140

Box size L/D = 700, (equivalent) spatial resolution $\sim 25 pts/D$.

Dynamic of cluster of (600) particles at Re = 15

Simulations performed by Daniel Oliveira (L.S.U)

Basilisk dlmfd + grain3D

Experiments by (Pignatel et al., 2011)

Thank you for your attention !

More on my sandbox at: http://basilisk.fr/sandbox/cselcuk/

Basilisk's global temporal-scheme for the Navier-Stokes problem reads: given u^n, λ^n , find $u^{n+1/2}, p^{n+1/2}$ such that:

$$\frac{\boldsymbol{u}^{n+1/2}-\boldsymbol{u}^n}{\Delta t} = -\left[\boldsymbol{u}\cdot\boldsymbol{\nabla}\boldsymbol{u}\right]^{n+1/4} + \frac{1}{\rho_f}\left[\boldsymbol{\nabla}\cdot\left(2\mu\boldsymbol{\mathcal{D}}_{\boldsymbol{v}}^{n+1/2}\left[\boldsymbol{u}^{n+1/2}\right]\right) - \boldsymbol{\nabla}\rho^{n+1/2}\right] - \lambda^n,$$
$$\boldsymbol{\nabla}\cdot\boldsymbol{u}^{n+1/2} = \boldsymbol{0}.$$

Solved with a modified version of the projection scheme proposed by (Bell et al., 1989).

The second sub-problem is a pure granular problem which reads: given U_i^n, ω_i^n find $U_i^{n+1/2}, \omega_i^{n+1/2}$ such that

$$\begin{pmatrix} 1 - \frac{\rho_f}{\rho_s} \end{pmatrix} M \left(\frac{\boldsymbol{U}^{n+1/2} - \boldsymbol{U}^n}{\Delta t} \right) = \left(1 - \frac{\rho_f}{\rho_s} \right) M \boldsymbol{g} + \boldsymbol{F} \boldsymbol{c}$$
$$\begin{pmatrix} 1 - \frac{\rho_f}{\rho_s} \end{pmatrix} \boldsymbol{I} \left(\frac{\omega^{n+1/2} - \omega^n}{\Delta t} \right) = -\left(1 - \frac{\rho_f}{\rho_s} \right) \omega^n \times \boldsymbol{I} \omega^n + \boldsymbol{T} \boldsymbol{c}.$$

Can be solved with any granular solver that handles contact forces and torques for multiple particles.

The fictitious-domain problem reads: given $\pmb{u}^{n+1/2}$, $\pmb{\lambda}^n$, $\pmb{U}^{n+1/2}$, $\pmb{\omega}^{n+1/2}$ solve

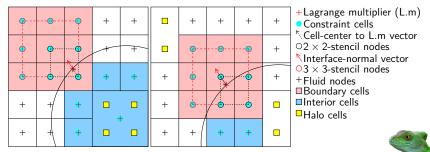
$$\begin{split} \rho_f \left(\frac{\boldsymbol{u}^{n+1} - \boldsymbol{u}^{n+1/2}}{\Delta t} \right) &- \boldsymbol{\lambda}^{n+1} = \boldsymbol{\lambda}^n \text{ over } \boldsymbol{\Omega} \\ \left(1 - \frac{\rho_f}{\rho_s} \right) \left(M \left[\frac{\boldsymbol{U}^{n+1} - \boldsymbol{U}^{n+1/2}}{\Delta t} \right] \right) &= -\int_{P(t)} \boldsymbol{\lambda}^{n+1} \, \mathrm{d} \boldsymbol{x} \text{ over } P(t) \\ \left(1 - \frac{\rho_f}{\rho_s} \right) \left(\boldsymbol{I} \left(\frac{\boldsymbol{\omega}^{n+1} - \boldsymbol{\omega}^{n+1/2}}{\Delta t} \right) \right) &= -\int_{P(t)} \boldsymbol{r} \times \boldsymbol{\lambda}^{n+1} \, \mathrm{d} \boldsymbol{x} \text{ over } P(t) \\ \boldsymbol{u}^{n+1} - \left(\boldsymbol{U}^{n+1} + \boldsymbol{\omega}^{n+1} \times \boldsymbol{r} \right) &= \boldsymbol{0} \text{ over } P(t). \end{split}$$

Saddle-point problem solved with an iterative algorithm (Uwaza).

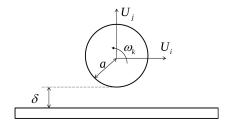
Collocation point method: use of a Dirac delta function as basis function for the Lagrange multipliers λ :

$$\boldsymbol{\lambda}(\boldsymbol{x}) = \sum_{I=1}^{L} \lambda_{I} \delta\left(\boldsymbol{x} - \boldsymbol{x}_{I}\right). \tag{1}$$

with *L* the number of Lagrange multipliers.



One sphere close to wall in Stokes flow



- δ : gap distance
- a: sphere's radius

• Large box: *L*/*a* = 60

- Periodicity on front/back and left/right faces
- "Wall" for bottom/top faces
- fixed particle
- imposed velocity: $\vec{U} = (0, -U_c, 0), \ \vec{\omega} = \vec{0}$

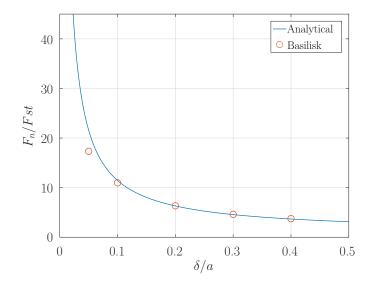
•
$$T_c = 2a/U_c$$

Analytical solution:

$$F_n/F_{st} = (\delta/a)^{-1} - \frac{1}{5}\log(\delta/a) + 0.97128,$$
 (2)

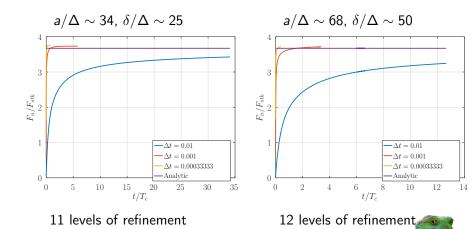
(Brenner, 1961) and (Cooley and O'Neill, 1969)

One sphere close to wall in Stokes flow



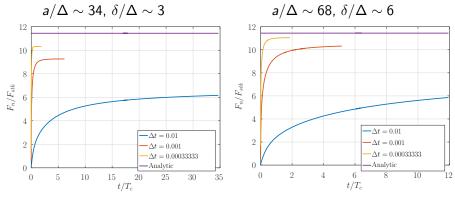
One sphere close to wall: temporal convergence

case: $\delta / a = 0.4$:



29 / 22

More challenging case: $\delta/a = 0.1$:



11 levels of refinement

12 levels of refinement