

Bursting bubbles in Basilisk

Alexis Berny¹, Luc Deike², Thomas Séon¹, Stéphane Popinet¹

¹ Sorbonne Université & CNRS

² Princeton University

Bursting Bubbles

Context

Estimation of aerosols flux

A bursting bubble

Outline

- Estimation of the liquid volume transferred to the air
 - Numerical simulation setup
 - Characterization of:
 - Velocity of the ejected droplets
 - Size of the ejected droplets
 - Number of ejected droplets
 - Estimation of the vertical mass flux

Numerical simulation setup

Simulated bursting bubble

La

10

La

11

Size of the first drop

SORBONNE UNIVERSITÉ

CRÉATEURS DE FUTUR

nbert

Size of the first drop

La

Size of the first drop

lembert

Counting the drops

16

La

Counting the drops

17

La

Counting the drops

18

La

Velocity of the second drop

La

Velocity of the third drop

La

La

Bursting Bubbles 6/24/19

21

La

Bursting Bubbles 6/24/19

22

Velocity of drops 2 to 5

Rond d'Alembert

Size of the second drop

24

La

Size of the third drop

La

Size of the fourth drop

26

La

Size of the fifth drop

27

La

Size of drops 2 to 5

Bursting Bubbles 6/24/19

28

Discussion

Velocity:

- Similar behavior for all the drops
- Droplet velocity decreases with the drop number

Size:

- Subsequent drops between 0.1 and 10 times the first drop
- Size of the subsequent drops roughly centered around the size of the first drop
- Data gets noisier as drop number increases

Characterizing the flux

30

From the data sets :

• We compute $F_{di} = \operatorname{Ca}_{di} \times \operatorname{La}_{di}^3$

- \square From previous scaling, asymptotic behavior for the first drop mass flux is $F_{d_1} \propto La^3$
- What about the total flux?
 - We compute $\Sigma_i F_{d_i} = \Sigma_i \operatorname{Ca}_{d_i} \operatorname{La}_{d_i}^3$

Mass flux of the first drop

La

Mass flux of all the drops

La

Simulated a bursting bubble with Basilisk

Characterized the size and the velocity of all the drops

 \square The total flux coming from all the jet drops is $\Sigma_i F_{d_i} \propto {\rm La}^3$

Questions?

34

