Some aspects of Rayleigh-Bénard dynamics studied using Basilisk

M. Rossi

Institut Jean Le Rond d'Alembert CNRS Université Pierre et Marie Curie

in collaboration with

Andres Castillo-Castellanos and Anne Sergent LIMSI-Paris VI

The Rayleigh-Bénard problem

A horizontal layer of fluid heated from below, cooled from above

Dimensionless numbers

$$Ra \equiv \frac{\beta \Delta T g H^3}{\kappa \nu} \qquad Pr \equiv \frac{\nu}{\kappa} \qquad \Gamma_x \equiv \frac{W}{H} \qquad \Gamma_z \equiv \frac{d}{H}$$

	Ra	Pr
Indoor ventilation	10^{10}	0.7
Deep oceanic convection	10^{24}	7
Mantle convection	10^{9}	10^{23}

Experiments	$Ra \sim 10^{16}$
Direct numerical simulation	$Ra \sim 10^{13}$

Experiments and simulations: main system responses

Global Nusselt number

$$Nu \equiv \frac{q_{Tot}}{q_{cond}} = \frac{\langle \overline{vT} \rangle - \kappa \langle \overline{\partial_y T} \rangle}{\kappa \Delta T / H}$$

Global Reynolds number

$$Re\equiv \frac{UH}{\nu}$$

U being a characteristic velocity (large-scale flow or RMS velocity)

Prediction of Nu and Re

 $Nu \sim Ra^{\beta_{Nu}}$ $Re \sim Ra^{\beta_{Re}}$

Experiments and simulations

F. Chillà and J.Schumacher, Eur. Phys. J. E (2012)

Self-organization of small scales in a large-scale circulation (LSC)

(a) Azimuthal meandering Funfschilling and Ahlers, (2004)

- (b) Flow Reversal} Xi \& Xia, (2008)]
- (c) Torsional Funfschilling et al., (2008)
- (d) off-center oscillations or sloshing of the LSC plane (Zhou et al., (2009))

Shadowgraph displays the time evolution of plumes

H.-D. Xi, S. Lam and K.-Q. Xia, (2004)

These events are often combined, producing rich and complex dynamics

To fix the plane of the large-scale circulation Pure 2D geometry: Chandra and Verma (2011,2013)

Boussinesq equations + standard BC

 $\nabla \cdot \vec{u} = 0$

 $\partial_t \vec{u} + \vec{u} \cdot \nabla \vec{u} = -\nabla p + PrRa^{-0.5} \nabla^2 \vec{u} + Pr\theta \vec{e_2}$

 $\partial_t \theta + \vec{u} \cdot \nabla \theta = Ra^{-0.5} \nabla^2 \theta$

Temporal discretization scheme

$$\frac{\vec{u}_* - \vec{u}_n}{\Delta_t} + \vec{u}_{n+1/2} \cdot \nabla \vec{u}_{n+1/2} = PrRa^{-0.5} \nabla^2 \vec{u}_* + Pr\theta_{n+1/2}\vec{e_2}$$

$$\frac{\theta_{n+1/2} - \theta_{n-1/2}}{\Delta_t} + \vec{u}_n \cdot \nabla \theta_n = Ra^{-0.5} \nabla^2 \theta_{n+1/2}$$
$$\frac{\vec{u}_{n+1} - \vec{u}_*}{\Delta_t} = -\nabla p_{n+1/2}$$

Staggered in time discretization Implicit viscous/BCG advection Pressure correction scheme

Spatial discretization scheme

Cartesian grid, multi-grid approach

Linear interpolation and central differentiation scheme

Implementation in Basilisk

Simple implementation by combining existing blocks of code

Examples of the code used found on http://basilisk.fr/sandbox/acastillo

Typical values for 2D DNS

Typical values for 3D DNS

106 109

C

р

Rafrom 10^6 to $5 \cdot 10^8$ Pr3.0 and 4.3Timefrom 5.000 to 40.000 t.u.Gridsizefrom (512^2) to (1024^2)

Ra	from 10° to 10°
Pr	4.38
Γ_z	from $1/8$ to $1/64$
Time	from 500 to 5.000 t.u.
Gridsize	from $(512^2 \times 64)$ to $(1024^2 \times 16)$

Validation criteria: Numerical convergence

exact relations between

$$\overline{Nu} = Ra^{0.5} \langle \overline{v\theta} \rangle - \langle \overline{\partial_y \theta} \rangle$$

and viscous dissipation rate

$$\overline{Nu} = \langle \overline{\nabla \vec{u} : \nabla \vec{u}} \rangle + 1$$

or thermal dissipation rate

$$\overline{Nu} = \langle \overline{\nabla \theta \cdot \nabla \theta} \rangle$$

B. Shraiman and E. Siggia, (1990)

Maximum difference between these quantities is around 1%

Turbulent convection inside square pure 2D RB cell

Global angular impulse L_2

$$L_{2D} \equiv -\frac{1}{2} \int \vec{x}^2 \omega dV$$

Two regimes

A regime composed of extended cessations EC

(ix)

(viii)

(vi)

(vii)

+0.5

(v)

(x)

A criteria to separate both regimes

Identify time with $L_{2D} = 0$ and inter-reversal interval τ_1

Podvin and Sergent, (2015)

Global approach: kinetic and available potential energies

Background or reference state

Imagine we adiabatically rearrange our fluid parcels into a thermally stable configuration

Background state is the density distribution with lowest potential energy, while preserving volume [Winters & Young (1995)]

Available potential energy corresponds to the part of potential energy that can be transformed into motion

$$E_{apot} \equiv -Pr \int (y - y_r(\vec{x}, t)) \theta(\vec{x}, t) d\vec{x}$$
 $y_r(\vec{x}, t)$ corresponds to the height at the reference state

Statistical characterization of the CR regime

Similar features are observed for different realizations

Reversals are scattered but follow similar trends

Re-scale time based on τ_1 and average over the ensemble of reversals

ACCUMULATION of available potential / braking of central vortex $E_{apot} \uparrow \qquad E_{kin} \downarrow \qquad |L_{2D}| \downarrow$

RELEASE of available potential and breakdown of the central vortex $E_{apot} \downarrow \downarrow \downarrow \qquad E_{kin} \uparrow \uparrow \uparrow \qquad |L_{2D}| \uparrow$

ACCELERATION of the central vortex

 $E_{apot} \simeq Const \qquad E_{kin} \uparrow \qquad |L_{2D}| \uparrow$

Phases of the generic reversal

ACCUMULATION

Field $-Pry_r\theta$ illustrates contributions to E_{apot}

RELEASE

Stored available potential energy is transformed into motion Field $\vec{u} \cdot \vec{u}$ illustrates contributions to E_{kin}

ACCELERATION

flow organizes, number of plumes decreases Field $\vec{\nabla} y_r \cdot \vec{\nabla} \theta$ illustrates the contours of thermal structures

Linear stability around the generic fields

Quasi-static approximation

0

 $\sigma \sim 0.005 \qquad \qquad \sigma \sim 0.25$

After reaching a threshold, growth rate σ increases!

2D Large scale dynamics Two separate regimes : CR and EC regimes

An energetic approach identifies a generic reversal cycle in 3 phases

Energy exchange in each phase is tied to evolution of large-scale structures

A threshold state for transition has been identified

"Reversal cycle in square Rayleigh-Bénard cells in turbulent regime" Castillo-Castellanos, A.; Sergent, A. and Rossi, M. Journal of Fluid Mechanics, Volume 808, pp. 614-640 (2016)